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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

Assumes that prior and observation are sup
Is it model error or random chance?
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between p
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

Distance, D, from prior mean y to obs. is

Prob. yo is observed givenλ:
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati

Assume prior is gaussian;
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati

G

f

M

t

0 1 2 3 4 5 6
0

1

2

Obs. Space Inflation Factor: λ

Prior λ PDF

−1 0 1 2 3 4
0

0.2

0.4

0.6

Observation: y

Obs. Likelihood
Inflated Prior λ = 1.5

p

p

p λ tk Ytk
,( ) p yk λ( ) p λ tk Ytk 1–

,( ) normaliz⁄=



6/14/07

rror Tolerant Filter

on factor,λ.

et

rom normal PDF.

ultiply by

o get

.

p yk λ 2.25=( )

λ 2.25= tk Ytk 1–
,( )

λ 2.25= tk Ytk
,( )

ation
Anderson: Ensemble Tutorial 9

Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

A. Computing updated inflation mean, .

Mode of  can be found an

Solving  leads to

This can be reduced to a cubic equation and so

New  is set to the mode.

This is relatively cheap compared to computing

λu
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Variance inflation for Observations: An Adaptive E

A. Computing updated inflation variance,

1. Evaluate numerator at mean and seco

2. Find  so  goes through

3. Compute as where
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior e
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Adaptive Observation Space Inflation 

Before After
Assimilation Assimilation

inf_flavor = 1, 0, Flav
inf_start_from_restart = .false., .false.,
inf_output_restart = .true., .true.,
inf_deterministic = .true., .true.,
inf_in_file_name = ’prior_inflate_ics’, ’post_inflate_ics
inf_out_file_name = ’prior_inflate_restart’, ‘post_inflate_re
inf_diag_file_name = ’prior_inflate_diag’, ’post_inflate_di
inf_initial = 1.00, 1.00, Initi
inf_sd_initial =0.2, 0.0, Initi
inf_lower_bound = 1.0, 1.0,
inf_upper_bound = 1000000.0, 1000000.0,
inf_sd_lower_bound =0.0, 0.0 Low

Try this in Lorenz-96 (verify other aspects of inp
Use 40 member ensemble. (setens_size = 40 in
Set red values as above for adaptive observ
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Adaptive Observation Space Inflation in

Run the filter

Examine performance withplot_total_err in matlab

Time series of inflation and standard deviation a

Inflation adjusts with time

Standard deviation is non-increasing
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Algorithmic variants:

1. Increase prior y variance by adding random g

As opposed to ‘deterministic’ linear inflating

Setinf_deterministic in first column to .false.

Change it back to .true. after checking this o

2. Just have a fixed value for obs. spaceλ

Cheap, handles blow up of state vars uncon

We already tried this in section 9.
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Algorithmic variants:

3. Fix value ofλ standard deviation,σλ.
Reduces cost, computation ofσλ can sometime
Avoids σλ getting small (error model filter div
Have to have some intuition about the value
This appears to be most viable option for lar
Values ofσλ = 0.05 to 0.10 work for very broa
This is a sampling error closure problem (ak

To fix σλ:
Setinflate_sd_initial to fixed value, for instanc
Setinflate_sd_lower_bound to same value.

(s.d. can’t get any smaller).

Try this in lorenz-96. Look at how the inflatio
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Potential problems with observation space adaptive 

1. Very heuristic.

2. Error model filter divergence (pretty hard 

3. Equilibration problems, oscillations inλ with 

4. Not clear that single distribution for all obs

5. Amplifying unwanted model resonances (

Try turning this on in 9var model.

Fixed 0.05 forinf_sd_initial, sd_lower_
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Simulating Model Error in 40-Variable Lore

Inflation can deal with all sorts of errors, includi

Can simulate model error in lorenz-96 by chang

Synthetic observations are from model with forc

Useforcing in model_nml to introduce model erro
Try forcing values of 7, 6, 5, 3 with and with

The F = 3 model is periodic, looks very little like
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Simulating Model Error in 40-Variable Lore

40 state variables: X1, X2,..., XN

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F;
i = 1,..., 40 with cyclic indices
Use F = 8.0, 4th-order Runge-Kutta with dt=0.0
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Experimental design: Lorenz-96 Model E

Truth and observations comes from long run wi

200 randomly located (fixed in time) ‘observing 

Independent 1.0 observation error variance

Observations every hour

σλ is 0.05, mean ofλ adjusts but variance is fixed

4 groups of 20 members each (80 ensemble m

Results from 10 days after 40 day spin-up

Vary assimilating model forcing: F=8, 6, 3, 0

Simulates increasing model error
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Assimilating F=8 Truth with F=8 Ens
Model time series Mean va

Assimilation Results
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Assimilating F=8 Truth with F=6 Ens
Model time series Mean va

Assimilation Results
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Assimilating F=8 Truth with F=3 Ens
Model time series Mean va

Assimilation Results
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Assimilating F=8 Truth with F=0 Ens
Model time series Mean va

Assimilation Results

Prior RMS Error, Spread, andλ Grow as Mod
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Base case: 200 randomly located obseratio

Assimilating Model Forcing, F Assim
(Error saturation is approximately

Prior RMS Error, Spread, andλ Grow as Mod
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Less well observed case, 40 randomly located
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Adaptive State Space Inflation Algorithm

Suppose we want a global state space inflationλs, i

Make same least squares assumption that is us

Inflation ofλs for state variables inflates obs. prio

Get same likelihood as before:

Compute updated distribution forλsexactly as for 

p yo λ( ) 2Πθ2( )
–

=

θ λsσprior
2 σobs

2+=
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Implementation of Adaptive State Space Inflation

1. Apply inflation to state variables with mean oλs

2. Do following for observations at given time se
a. Compute forward operator to get prior en
b. Compute updated estimate forλsmean and v
c. Compute increments for prior ensemble.
d. Regress increments onto state variables.

All the algorithmic variants could still be applied
What are relative characteristics of these algori
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Experimenting with spatially-constant state spa

To try adaptive state inflation, setinf_flavor=3 in fir
May help to increase initial value,inf_initial
Diagnostics are inPrior_Diag.nc file;

This can be viewed withncview (more on this l
Final values are inprior_inflate_restart file
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Spatially varying adaptive inflation algorithm:

Have a distribution forλ at for each state variableλ

Use prior correlation from ensemble to determin
prior variance for given observation.

If γ is correlation between state variable i and o

Equation for finding mode of posterior is now fu
Analytic solution appears unlikely.

Can do Taylor expansion ofθ aroundλs,i .

Retaining linear term is normally quite accurate
There is an analytic solution to find mode of pro

θ 1 γ λs i, 1–( )+[ ]
2
σprior

2
σobs

2+=
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Experimenting with spatially-constant state spa

To try adaptive state inflation, setinf_flavor=2 in fir
May help to increase initial value,inf_initial
Diagnostics are inPrior_Diag.nc file;

This can be viewed withncview
Final values are inprior_inflate_restart file
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Posterior Inflation

So far, we’ve always used the first column of th
Inflation is performed after model advances but
Can also do posterior inflation using second co
This does inflation after assimilation but before 
Technically, this is cheating except in the limit o
Assumption that observations and error are ind
Helps to increase variance in forecasts

Can also do both prior and posterior inflation (u
Diagnostics are in same files with ‘post’ instead
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Combined model and observational error variance 

Is this really possible. Yes, in certain situations.
Is there enough information available?

Spatially-vary inflation for state

Inflation factor for different sets of observations

Different λ’s see different observations

Initial tests in L96 with model error AND incorre
can correct for both!!!

θ 1 γ λs i, 1–( )+[ ]
2
σprior

2
λoσobs

2+=
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