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SUMMARY

The vertical flux of mass by atmospheric convection, and cumulus ensembles in particular, is a key
quantity used in parameterization schemes for numerical weather prediction models and climate models.
The concept of formulating mass fluxes in terms of statistical quantities is discussed and a probabilistic
formulation of the upward mass fluxes, based on extreme value theory, is presented. This approach
is illustrated by a statistical analysis of two-dimensional, cloud-resolving numerical realizations of two
regimes of tropical convection, namely a squall-line and non-squall clusters. Our statistical model allows
these distinct cloud systems, which play a key role in determining the shape of the mass flux profile,
to be efficiently integrated. Also taken into account is the distinction between mesoscale and convective
components of the mass flux.

KeyworDs: Upward Mesoscale Convective Systems  Generalized Pareto Distribution  Maxi-
mum Likelihood Estimation

1. INTRODUCTION

Convective mass fluxes are widely used in the parameterization of cumulus con-
vection in large-scale models. It is appropriate to consider cloud systems (populations
or ensembles of cumulus) rather than individual cumulus. While numerically simulated
cloud systems contain uncertainties arising from parameterizations of cloud microphysics
and radiation, their macrophysical properties are more complete and consistent than
observations provide. Atmospheric convection normally occurs on spatial and temporal
scales much smaller than directly measurable. Therefore, cloud-resolving numerical mod-
els (CRM) are useful for calculating the convective mass flux explicitly. The key problem
is then to reduce these synthetic data to simple analytic forms for use in convective pa-
rameterization. One way is to derive idealised dynamical models (Moncrieff 1981), while
another is to use statistical methods, which is the approach we adopt in this paper.

The standard analytic formulation for the mass flux used in convective parameter-
izations originates from the Squires and Turner (1962) model of an entraining plume.
It is given by M(z) = Mg exp(—(ep — €g)z), where eg and ep are the fractional entrai-
ment and detrainement rates, respectively, which have typical atmospheric values of order
10=* m~1! and satisfy ep > eg. We refer to Siebesma (1998) for a review and assumptions
implicit in this mass flux formula. While useful in special cases, the exponential decay
in the analytic form of M(z) has limitations and does not usually correspond to mass
flux profiles computed from convective realisations. Consequently, more flexibility and
non-homogeneity should be incorporated into the mass flux formulation.

Since cloud system simulations provide a comprehensive source of synthetic data for
tropical convection, it is natural to develop a new probabilistic upward mass flux method
based on statistical principles. The parameters (coefficients) of our statistical model have
a physical interpretation, being closely related to the distinct cloud populations that occur
in different shear profiles. The statistical model is based on extreme value theory, which
theoretically justifies this approach and is explained below. More importantly, the wind

* Corresponding author: Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique, Ecole
Polytechnique, France



2 P.N. Naveau and M. W. Moncrieff

extremes play a significant role in the computation of the upward mass flux, and therefore
the statistical theory of extremes ought to be important in the stochastic formulation
of the mass flux. In addition, a key aspect is the organising effect of environmental (i.e.
mean flow) shear on convection as shown by Moncrieff (1981). Two scales are identified
— convective and mesoscale, a property seen in Figures 3 and 6 from Liu and Moncrieff
(1998; hereafter LM98). We show that this decomposition is closely related to the problem
of separating extreme velocities from the rest of the motion spectrum.

Besides providing a new description of the upward mass flux, extreme velocities
from CRM outputs is in itself of strong interest. The statistical properties of such quan-
tities, essential to convection, have not previously received much attention, despite the
increasing popularity in the statistical analysis of extremes in atmospheric science. For
example, a couple studies (Zwiers et al. 1998 and Kharin et al. 2000) examined how well
general circulation models simulate extremes. Our work has a similarity to such studies:
the statistical analysis of numerically simulated outputs and the use of extreme value
theory to quantify the tail distribution of important atmospheric variables.

Our paper is organised as follows. In the next section we present the synthetic
data sets and the notation for the upward mass flux. The decomposition of this mass
flux and its relationship to total condensate is undertaken in Section 3. In section 4
the distribution of vertical velocity exceedances is studied. In section 5 we describe the
key statistical procedures, interpret the coeflficients of the statistical model in physical
terms, and describe the mass flux computation including the convective and mesoscale
decomposition. The paper concludes in section 6.

2. DATA SETS AND NOTATION

(a) Synthetic data from resolved convection

Atmospheric convection tends to be dynamically organised or coherent on spatial
scales ranging from a few kilometers to about a thousand kilometers (the mesoscale).
While these mesoscale systems have been extensively analysed in field experiments and
numerically simulated, the attendant effects on the large-scale circulation of the atmo-
sphere are not well understood.

LM98 conducted two 12-day, two-dimensional numerical experiments of tropical con-
vection. One was in jet-like shear, which is associated with squall-line type organisation.
In the other, the wind shear was removed, but the same thermodynamic environment
was used, yielding less coherent non-squall clusters. Specifically, we used 576 temporal
snapshots from LM98 taken every 30 minutes over the spatial domain 600 x 26 km (the
original data had a 10-second resolution). The horizontal resolution was 2 km and the
vertical resolution ranged from 0.1 km in the boundary layer to 1 km in upper levels.
The condensate cloud fields from these two experiments are plotted in figures 3 and 6 of
LMO98. These systems persist because the convective available potential energy was con-
tinuously generated by a prescribed domain-scale advection of temperature and moisture.
As illustrated in Fig. 2 from LM98, these representative series of long-term data are ideal
for statistical analysis. Six variables [wind velocities (U, W), potential temperature and
different categories of moisture (cloud, rain and ice)] characterised the cloud systems and
were available at each grid point.

(b)  Trajectories and exceedances of vertical velocity

The vertical velocities play an important role in the computation of the upward
mass flux. It 1s therefore essential to assess their intensities and locations in time and
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space. As an example, we plot the locations of strong vertical velocities (i.e. greater than
a given threshold, see Section 3 for the methodology used to choose the threshold). These
traces correspond to the squall-line case in Fig. 1 and to the cluster pattern in Fig. 2,
respectively. The intensities associated with these traces are defined as exceedances that
measure by how much the velocity exceeds a prescribed threshold. Besides capturing
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Figure 1. Squall-line case: Positions in time and space where vertical wind velocities exceed 4 ms™?!
during the last two days.
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Figure 2. Non squall-line cluster case : same variable as in Fig. 1.

some of the main dynamical structures, the thresholding procedure has two other main
advantages. First, it greatly reduces the data set by retaining only the key character-
istics. Indeed, the majority of the vertical velocity values are approximately zero over
most of the computational grid. Only large values of W contain relevant information
regarding cloud trajectories for the upward mass flux computation (Fig. 1). The sec-
ond advantage is that probabilistic models (Leadbetter et al 1983 and Embrechts et al
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1997), as well as statistical tools (Reiss 1997, Coles 2001), can describe the distribution
of exceedances. These theoretical results and statistical devices are key aspects in our
statistical formulation of the upward mass flux.

(¢) Upward mass flux definition

In each of the two simulations described above, the cloud systems (either squall lines
or non-squall clusters) maintain an overall self-similar form. It is therefore legitimate to
define a composite upward mass flux as:

1

M) = T e

/p(z)W(a:, z,t) Z[0 < W(z, 2,1)] Z[Qc(z, 2,t) > qoldudt

where p is the air density which is assumed to be only a function of height 2z, Q. is the
total condensate (rain water, cloud droplets and ice), go = 0.1 gm ™3, and Z[A] denotes the
indicator function which is equal to 1 whenever A is true and 0 if it is false. In practice,
we estimate M(z) by first taking the expectation of all positive W such that Q. > ¢o
over the entire domain, and second by multiplying this expectation by p(z). Under a
probabilistic frame work (i.e. viewing W and Q. as random variables), the upward mass
flux is simply equivalent to the expectation:

m(z) = p(z) E{W(z) Z[0 <W(2)] Z[Qc(2) > qol} - (1)

Note that capital letters like Q.(z) now correspond to random quantities and normal
fonts to constants like ¢q.

3. MASS FLUX DECOMPOSITION

(a) Mesoscale and convective scale

To obtain a parametric formulation of m(z), a first step is to understand the depen-
dence between the variables W and Q.. One could directly estimate the bivariate density
of the random vector (W, @) but this approach presents difficulties. In particular, the
dependence cannot be simply modeled by a covariance function, because these variables
are not normally distributed. We use the fact that neither the entire distribution of Q.
nor the entire dependence between W and Q. is necessary to compute m(z). We only
need to understand the relationship between W and the event {Q.(z) > ¢o}, which is
much easier. This fact will be used frequently herein.

Before presenting the advantages of such approach in detail, we divide the indicator
function Z[0 < W(z)] into two parts: Z[0 < W(z)] =Z[0 < W (z) < d,]+ Z[d, < W(z)], for
some high positive threshold d, which can vary with z. Then, the upward mass flux can
be decomposed into two components, mj(z,d;) and its complement ms(z,d,), which
correspond to fluxes with large and small values of W, respectively:

mi(z,0:) = p(z) E{W(2) Z[8. < W(2)] Z[Qc(2) > qo]}

and ma(z, ;) = m(z) — m1(z, d;). Does this mathematical decomposition have a physical
meaning? To answer this question, the spatial locations of large and small W for the
squall-line case during the first 5 hours of the 11th day are plotted in Fig. 3 and Fig.
4. One immediately notes that the strong vertical velocity occurs mostly within the
convection towers and that weaker values occur in the anvil region. In other words,
this decomposition approximately separates the mesoscale part of the cloud system from
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Figure 3. Decomposition of the vertical wind: locations of strong W during the first 5 hours of the 11th
day for the squall-line case.
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Figure 4. Decomposition of the vertical wind: locations of low W during the first 5 hours of the 11th
day for the squall-line case.

the convective part. The concept of decomposing the mass flux into a convective and
mesoscale components in physical space was used by Houze (1977). Recently, Yano et
al. (2001) proposed a more complex approach in which the decomposition criterion was
implemented in wavelet space that represents different processes at different scales.

(b) Statistical dependence between Q. and W

Besides distinguishing the mesoscale component from its convective counterpart,
our mass flux decomposition has statistical advantages. Since large vertical velocities are
usually associated with large ()., one anticipates that (). > gqo whenever W is sufficiently
large. To test this hypothesis, we estimate the probabilities that Q. > to given W > 4, at
different altitudes. These probabilities are denoted by p(d,) = Pr[Q.(z) > qo|W (z) > d.].
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Figure 5 shows the estimated values of p(d, ) at 4 randomly chosen altitudes. As expected,
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Figure 5. Probability p(8.) for 4 randomly chosen altitudes. The vertical lines represent the values of
8§~ for which 0.998 < p(§;). The solid line corresponds to the squall-line case and the dotted one to the
non-squall cluster.

p(d,) increases to 1 as the threshold increases. The total condensate Q. is almost always
greater than gg whenever the vertical wind W is high enough. The left panel of Fig. 6
indicates that 6., takes roughly two values, around 1.5 ms™! from 2 km to 7 km and
around 3 ms~' above 8 km. This can be better understood by examining the snapshot
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Figure 6. Left panel: Vertical profile of the estimated §. for which 0.998 < p(§). Right panel: Density

of the Generalised Pareto density.

of total hydrometeor field in Fig. 6 from LM98. Precipitating convective systems occur
mostly below 8 km and in less-organised but more extensive stratiform mesoscale clouds
above 8 km.

By construction of the threshold (see Fig. 5), we can assume for the remainder of this
paper that W > d, implies (). > qo. This assumption greatly facilitates the computation



A Probabilistic Formulation of Convective Mass Fluxes 7

of my(z,d;) which simply becomes
m(2,8:) = plz) B{W(:) T, < W)} 2)

and does not depend anymore on (). This implies that we only need to determine the
distribution of large vertical velocity to estimate (2). In the following section we will
show how to complete this statistical task by using extreme values theory.

4. DISTRIBUTION OF VERTICAL VELOCITY EXCEEDANCES

Most statistical methods used in climate studies are concerned primarily with what
goes on in the center of a probability distribution (the mean) and on the deviation from
it (the variance). One reason for the popularity of such methods is that the assumed dis-
tribution is Gaussian, which is uniquely characterised by its mean and its variance. Such
assumption is often justified by one of the most famous theorem in probability, the Cen-
tral Limit Theorem, which states the distribution of the sample mean is approximately
Gaussian for large samples. A less known, but nevertheless similar, result also holds for
the extremes. Indeed, the distribution of the maximum in large random samples is not
unknown but instead follows a specific distribution called the Generalized Extreme Value
distribution (GEV). In recent years, the statistical methodology in extremes has shifted
from working with maxima towards modeling exceedances, i.e. amounts above a given
threshold. The advantages of using exceedances are its flexibility and the fact that more
data are retained. From a probabilistic point of view, the two methods are equivalent,
the GEV distribution simply takes an analog but different form, called the Generalized
Pareto Distribution described in the next section. The extreme values theory has long
been applied to a variety of problems in finance, hydrology, forestry; however its use for
analyzing climate models has been more limited (Kharin et al. 2000, Zwiers et al. From a
probabilistic standpoint, the book by Leadbetter et al. (1983) is recommended. For more
recent works, the reader is referred to Embrechts et al. (1996) for theoretical aspects and
to Coles (2001), Reiss (1997) and Katz (1999) for a more applied approach.

(a) Ezceedances and Generalized Pareto Distribution

It is known from theory that the conditional distribution of exceedances Y = W —§
given that W > § should approximately follow the so-called Generalized Pareto Distribu-
tion (GPD) defined by the probability distribution function Fj o(y) =1 — (1 — ky/ o)tk
if k#0 and Fi o(y) =1 — exp(—y/a) otherwise. The parameters a and k are the scale
and shape coefficients respectively and the range of y is 0 <y < oo for k<0 and 0 <y <
a/k for k > 0. To illustrate the importance of the coefficient k on the distribution shape,
we plot in the right panel of Fig. 6 the generalized Pareto density for 4 different values of
k and a = 1. From this graph, one can see that the precise estimation of k is essential for
assessing the right density to the exceedances (see Appendix for the estimation procedure
of the GPD parameters).

(b) Diagnostic tools
From the extreme value theory, one expects that the distribution of the exceedances
Y should follow the GPD if the correct threshold sequence is chosen. In Section 3b, we
derived the threshold values §, according to the dependence between W and .. To check
if the exceedances above such chosen thresholds really follow a GPD, we use two classical
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Figure 7. Mean excess function and qqg-plot for 2 altitudes (2.10, 8.23 km, i.e. §:=(2.4, 2;7)) for the
squall-line case during the last 10 days. The dotted line corresponds to the 5% — 95% confidence intervals
and the straight solid line to the expected mean excess function.

diagnostic tools. The first one is directly based on the definition of the GPD and it is
called mean excess function and defined as the expectation of Y — ¢’ given that Y > §’
a

— k&’
——— forany ¢’ >0 and k < 1. (3)

6(5/) = E(Y —(5/|Y >5’) = Tk

To estimate the mean exceedance function, we first calculate Y — §’ for each observation
Y, then take the mean and finally plot the result against ¢’. Smith with co-authors wrote
a series of papers (1991,1989,1990) on the mean excess function and its applications. The
choice of appropriate thresholds is based on Eq. (3), if the excesses over a threshold §
indeed follow a GPD with coefficients (4, k), then the mean excess over any level §' > §
should vary with §’ according to a straight line of slope —k/(1 + k). The second diagnostic
tool to test the quality of the GPD fit is the gg-plot (quantile-quantile plot) which is a
probability drawn after estimating o and k. If the GPD distribution fits the data to
sufficient accuracy, the qqg-plot should be roughly a straight line of unit slope through
the origin. In the next section, we will use these two diagnostic tools.

(¢) Vertical variability and physical interpretation of the coefficients

To enable our exceedance-based strategy to be successful, we must take the vertical
variability into account. We follow the approach of Davison and Smith (1990) where
a GPD model is fitted for different subgroups of the data set. Herein, a subgroup is
defined by the values of W at a specific altitude z. This involves choosing threshold
values ¢, for each altitude z, varying from 0.5 km to 12.5 km (beyond this range, the
variable W is negligible). Figure 7 displays the mean excess function and the qg-plot for
2 randomly chosen altitudes z = 2.10, 8.23 km (the dotted lines represent the boundaries
of a Monte Carlo 90% confidence interval). The two diagnostics tools indicates reasonable
fit, specially for the qg-plot. Some abrupt changes occur in the mean excess plot, but
only at high thresholds and the curve remains within the confidence intervals except for
some short sections.

Figure 8 portrays the values of o and k as a function of z. Striking similarities are
noticeable between the vertical behavior of & and the fractional vertical cloudiness of
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Fig. 9 from LM98. In particular, three “peaks” are exhibited in the left panel in Fig. 8
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Figure 8. Vertical estimates of o and k& over the domain and during the last 10 days. The solid line
corresponds to the squall-line case and the dotted one to the non-squall cluster.

for the squall-line case, indicating three main cloud populations. The highest value of
a corresponds to deep cumulonimbi and stratiform clouds, the second bump is located
around the melting level and the smallest peak in the lowest 2 km corresponds to shallow
cumulus. For the non-squall cluster case (dotted line), only two cloud populations are
present and the low-level peak is absent. This may be due to the lower hydrometeor
content in the non-squall cluster. For the coefficient k, the melting level and deep cu-
mulonimbi and stratiform clouds are still visible and there is also a overall trend, i.e. k
roughly decreases with altitude up to the melting level. This indicates that the tails of
the distribution of W becomes heavier and heavier from 1 km to 8 km, i.e. the vertical
velocity is progressively larger at higher altitudes.

5. PROBABILISTIC FORMULATION

To define a new statistical expression for the mass flux, we use the results in Section
4 to develop a probabilistic formulation of the convective term m (z, d,) defined by Eq.

2.

(a) Convective component

The convective component m1(z,d,) is closely related to the GPD. Since we have
chosen the threshold §, such that the exceedances above the threshold §, follow a GPD
and that W > §, implies Q. > ¢, we can use this information when computing the ex-
pectation mq(z,d,):

my(z,9;) = p(z) Pr(W >4,) E(W|W >4;), from Eq. (2),
p(z) Pr(W >4;) [e(d;, z) + 5],
a(z) + 4,

= p(z) Pr(W>4,) m

, from Eq. (3).
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The right-hand side of the last equality is our new formulation of the upward mass fluxes
for large W based on statistical principles. To test the validity of such approximation,
we plot in Fig. 9 the values of mj(z,d,) directly computed from the simulations (repre-
sented by triangles in Fig. 9) and the new one (dotted lines). According to this figure,
the two computations are in excellent agreement. In particular, the differences observed
between the squall-lines and non-squall clusters are well represented. This indicates that
the proposed probabilistic formulation is good way of describing the upward mass flux

for large W.

12

10

2 (km)

0.0 0.0050.0100.0150.0200.025 0.0 0.005 0.015 0.025
Non-squall clusters Squall lines

Figure 9. Comparison between the probabilistic upward fluxes (mi(z, §-) in dotted line and m(z) in

solid line) and the ones directly computed from the simulations (triangles for convective part and circles

for total flux). The squall lines case, respectively the non-squall cluster case, is represented in the right
panel, respectively the left panel.

(b)  The probabilistic formulation of m(z)

For the non-squall clusters case, there exists a striking similarity in shape between
the convective upward mass flux (triangles in the left panel of Fig. 9) and the over-all
mass flux (circles). This indicates that the probabilistic convective flux my(z,d;) could
be a good predictor for the probabilistic flux m(z). To test this hypothesis, we introduce
the following model

ag + aj logmy(z,9;) + e(z) if 2 >5 km,
log m(z) = (4)

bo + by logmy(z,d;) + e(z) if 2 <5 km,

where ¢(z) represents some white noise. To estimate the coefficients of this statistical
model, we use a least trimmed squares regression (Rousseeuw et Leroy 1987). After
computation, the estimated profile of m(z) is represented by the solid line in the left
panel of Fig. 9 and it provides a good approximation of the upward mass flux (circles).
This result shows that the quantity mi(z,d,) which was built exclusively from strong
velocities is sufficient to determine the whole profile of the upward mass flux.
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The squall-lines case presents an additional difficulty, the similarity between m;(z, d,)
and m(z) vanishes under 5 km (see right panel of Fig. 9). To solve this problem, we replace
the part corresponding to z <5 km in (4) by

bo + by logmy(z,0,) + balog Pr[0 < W(z) < 4., Qc(z) > qo0] + €(2).

Adding this new predictor to the regression provides an excellent fit of the upward mass
flux by the probabilistic model (see the circles and the solid line in the right panel of Fig.
9).

6. CONCLUSIONS

Besides proposing a new way of determining mass fluxes, our probabilistic approach
underlines the importance of the extremes, specially in the vertical velocity. This variable
is the corner stone of our stochastic formulation of the upward mass flux. The extreme
values of W have a more important influence than previously thought. The wind ex-
ceedances represent a miniscule part of the data set (less than 0.2%) but their impact
on the mass flux is crucial. Hence, strong vertical velocities cannot be appreciated from
their numbers but, rather, from their impact on the upward mass flux. In addition, our
probabilistic approach allows us to separate the convective part from the mesoscale com-
ponent. The criterion used for this dichotomic decomposition is the dependence between
W and @, which seems to play an important physical role (more research should be
done in this direction). The coefficients of the GPD in our probabilistic formulation cor-
respond to the vertical variability present the tropical convective system. Finally, while
two-dimensional simulations were used as an illustration, the method could be extended
to three spatial dimensions.

APPENDIX

We recall the basic assumptions used to estimate the parameters of our statistical
model.

1. The number, N(z), of exceedances at altitude z and above the level §, follows a Poisson
distribution with mean A(z) and

2. conditional on N (z) > 0, the exceedances are identically and independently distributed
with a common GPD whose coefficients are (a(z), k(2)).

To determine the values of the coefficient vector 6(z) = (a(z), k(z), A(z)), we estimate
(=) separately for each altitude with the maximum likelihood method. This approach
consists of two steps. First, we write down the likelihood function {(f(z)) which is the
probability of observing our data as a function of the coefficients. Second, we choose the
parameters é(z) which maximizes the likelihood function. Because of assumptions 1 and
2, we write
(A(2)D)N® exp(-A(z)D) 15 [ 1 k(=)W 1 i)
10(:)) = T (0 - o),
N(z)! , a(z) a(z)

i=1

where D is the dimension of the grid at altitude z.

Note that we estimated the parameters independently for each altitude. A possible
extension is to undertake a global maximum likelihood estimation. This would be possible
whenever a vertical dependence structure is assumed.
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