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Summary: Forecasting aircraft (clear-air) turbulence is currently based on a
system of observations by pilots combined with a mostly subjective evaluation of
turbulence indices derived from numerical weather prediction models. We address
the issue of improving the forecasting capability of the single indices by combining
them in a non-parametric multidimensional regression model, and applying discrim-
inant analysis to the resulting predicted values. Thus we enhance the predictive
skills of the indices considered in isolation and provide a more robust algorithm.
We adopt the paradigm of Flexible Discriminant Analysis (FDA), and use Mul-
tivariate Adaptive Regression Splines (MARS) and Neural Networks (NN) in the
regression stage. The data for this case study covers the period March 12-15 1999,
for the United States. Results of the analyses suggest that our statistical approach
improves upon current practice to the point that it holds promise for operational

forecasts.

Keywords: Multivariate adaptive regression splines (MARS); neural networks
(NN); flexible discriminant analysis (FDA); numerical weather prediction models;

turbulence potential indices; probability of detection.
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1 Introduction

In January 1998 an airliner flying between Tokyo and the United States unexpectedly
encountered severe turbulence. As a result, one woman aboard was fatally injured and
several passengers were seriously harmed. This is a dramatic example of the problems caused
by turbulence with regard to aviation safety. Beyond such extreme cases, the magnitude of
the problem is cause for concern: US airlines experience on average 30 medical emergencies
a day related to turbulence encounters; structural damage to aircraft may result; and there
is a significant increase in fuel consumption during turbulent flights (Ellrod and Knapp,
1992).

One particularly troublesome type of turbulence encounters are those occurring in clear
air, but predicting clear-air turbulence (CAT) is a challenge for the scientific community. Its
occurrence is seldom linked to visible phenomena (viz. clouds), as the name suggests, and it
is patchy in space and time. Moreover, the precise physical mechanisms that create CAT are
not well understood. Operational predictions are still, for the most part, based on subjective
evaluation of weather maps and recent reports from pilots who encounter turbulence. As an
alternative, quantitative predictors of CAT have been proposed based on the hypothesized
triggering mechanisms and computed from the output of numerical weather predictions
models. Such models are dynamical in nature, relying primarily on deterministic physical
models of atmospheric motions, with parameterizations of some smaller-scale phenomena.
In particular, these models can not resolve instances of CAT, and so any index derived
from model output is necessarily only an indirect measure of the phenomenon. This project
was initiated with the belief that a comprehensive statistical approach could contribute to
evaluating and improving the forecasting skill of these indices.

Tackling this as a statistical problem is complicated by the quality of the verification
data. Airplanes encountering turbulence are the only source of observations. Consequently,
the spatial distribution of these observations is irregular, following the routes traveled by the
aircraft, with intense coverage over certain regions and poor or no ’sampling’ of others (See
Tables 2 and 3). In addition, the objectivity and reliability of the observations are an issue:
no instrument currently is in use that can objectively measure turbulence intensity, and so
the task is assigned to the pilots themselves, who are requested to log turbulence encounters
and identify intensity based on their own experience or impressions. Although a small
number of aircraft additionally provide automated observations of the vertical acceleration
of the aircraft, this type of record is only reliable for signaling the absence of turbulence,
since accelerations may also be pilot induced.

Based on pilot and instrument observations, the goal of the statistical analysis is to
build a model to forecast CAT using various turbulence diagnostic indices computed from

the output of a numerical weather prediction model. Our analysis features nonparametric
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methods for discrimination and serves two purposes. The first is to introduce to a statistical
audience a substantive problem in meteorological forecasting that benefits from an intensive
statistical treatment. The second goal is to document the success of flexible discriminant
analysis (FDA) for a physically based problem. Although we find the philosophy behind
FDA compelling, we also note that few independent examples exist in the statistics literature
indicating its value.

The paper is structured as follows. Section 2 discusses CAT from the stand point of the
atmospheric science community, and outlines current practice for its prediction. Section 3
describes the observational data available, and the pre-processing needed for statistical
analysis. Section 4 reports results from an initial analysis of the single indices’ contribution.
Section 5 gives a model-based introduction to FDA, followed in Section 6 by descriptions of
two nonparametric techniques: Multiple Adaptive Regression Splines (MARS) and Neural
Networks (NN). Section 7 describes the actual implementation of these techniques to the
problem of CAT forecasting. Evaluation of our solutions and comparison with the single
index approach and a linear (logistic) approach are performed, using standard measures
of forecast quality (e.g., Brown et al., 2000). Section 8 is a discussion of open statistical
questions posed by this case study and possible extensions when this work is used in an

operational forecasting setting.

2 Diagnosing clear-air turbulence

2.1 The Rapid Update Cycle system

Numerical weather prediction models can predict synoptic or mesoscale conditions thought
to be conducive to the initiation and maintenance of CAT. Unfortunately, CAT is a small
scale meteorological phenomenon, not resolvable at the typical model grid spacing, and this
fact accounts for poor statistical correlation between CAT and any quantity predicted by
such models (Ellrod and Knapp, 1992). Our study aims to enhance the forecasting skill of a
suite of indices routinely derived from the output of the Rapid Update Cycle (RUC) system,
a numerical weather prediction model that is now in operational use by the National Oceanic
and Atmospheric Administration (Benjamin et al., 1998). The RUC system produces three-
dimensional analyses and short-range forecasts at regular intervals by blending observations
from a network of surface stations, rawinsondes?, aircraft and profilers with the background
meteorological fields provided by its previous forecast output. In the present formulation

the horizontal domain covers the continental United States and adjacent areas of Canada,

*Instrument packages lifted by balloon that measure meteorological quantities such as temperature, rel-
ative humidity, pressure and, being coupled to a GSP transmitter or tracked by radar, wind direction and
speed
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Mexico, and oceans. The vertical dimension is resolved by a number of layers extending
from the surface to 18,000 meters above it, through an irregular vertical spacing based on
the local thermal structure of the atmosphere. Horizontal grid spacing is 40 km. over the
domain shown in Figure 1.

The RUC system produces variables to describe the state of the atmosphere, among
which are relative humidity, surface temperature, dew point, sea level pressure, wind com-
ponent speeds, precipitation amount, 3-hr pressure change, and gust wind speed. Concep-
tually such a model divides the atmosphere into a three dimensional grid of boxes. The
state vector can be interpreted as the average physical quantities in each box at a particular
time. The model is evolved forward to the next time step using the discretized mechanical
and thermodynamical laws for fluid flow and conservation laws. The main caveat to this
approach is that the spatial resolution of this model, and almost all other operational fore-
cast models, cannot explicitly describe important features of the atmosphere. For example
the influence of thunderstorms (strong convection) in providing vertical motion is accounted
for in the RUC model implicitly through a technique known as parameterization. Clear-air
turbulence also cannot be resolved from the RUC model, however the hypothesis is that
the average quantities for a grid box are useful for diagnosing the local tendencies in the
atmosphere, most important for weather forecasting applications. In this way they should

give some information about the presence or absence of CAT.

2.2 Turbulence potential indices

From the RUC model state vector, potential indicators of turbulence (indices) are computed.
A complete list of the indices that constitute the covariate set appears in the Appendix and
to give the reader an example of the indices’ physical base, a short derivation of Ellrod’s
indices is included. Depending on the scientific definition of each index, values above or
below index-specific thresholds are considered indicators of CAT potential. These thresh-
olds are calibrated by comparing index values to observed CAT episodes. This calibration
has historically shown a lack of objectivity and consistency across different model outputs
and sets of verification data. Indeed, to our knowledge, no rigorous approach has been
undertaken so far in order to analyze, discriminate, compare and combine the efficacy of
the different indices, and it is in this direction that our work is focused.

The atmospheric sciences have a well developed literature on quantifying how well a
forecasting method performs (e.g., Harvey et al., 1992; Murphy, 1997; Wilks, 1995). With
respect to CAT there are still unresolved issues as to what are acceptable values of the
forecast verification statistics. Recent work has outlined some standards, however, that are
required in order for a CAT forecast to be useful (Sharman and Cornman, 1998). Two

important quantities are the probability of detection of a YES event, pdi from now on,
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defined in our case as the proportion of observed turbulence events that were correctly
forecasted, and the probability of detection of a NO event, pd0, defined as the proportion of
observed non-turbulence events that were correctly forecasted. Due to the peculiar nature
of the verification data (pilots’ reports and vertical accelerometer observations), we consider
pd0 and pd1 reliably estimated, since they are estimates of distributions conditional on the
observations, but we do not look at other statistics, such as the false alarm ratio (defined
as the proportion of forecasted YES events that were incorrect) since they are estimates
of distributions conditional on the forecasts, and the sampling of the forecast grid by the
observations is not representative enough. For a detailed justification of this choice we refer

to Brown and Young (2000) and references therein.

3 The verification data

We use the model output relative to three forecast times: 15:00, 18:00 and 21:00 UTC
(corresponding to 9:00, 12:00 and 3:00 EST) from March 12-15, 1999, a total of 12 =4 x 3
time periods. The winter period is when CAT occurrences are more frequent, and it is
also fairly unaffected by convective activity, frequent in spring and summer, that would
introduce spurious sources of turbulence. We choose a limited dataset as the test bed of our
statistical investigation, in order to maintain a manageable size for analysis by standard
statistical packages.

The CAT observations are recorded by commercial aircraft along their regular flight
path, and consist of pilots’ reports (pireps) — signaling the location, time and intensity
of turbulence episodes encountered — and vertical accelerometer data (avars) — measuring
in real time all aircraft accelerations, whether they are due to turns, climbs, descents,
or turbulence encounters. Pireps can include both positive and negative observations of
turbulence. They are, however, reported sporadically and inconsistently because, in general,
they are not required by regulation. Avars provide unambiguous information only when the
instrument produces a null record, i.e. does not register vertical acceleration, and thus can
only be used as observations for the absence of turbulence. Therefore pireps are the only
source of positive turbulence observations, which are rated subjectively by the pilots on a
discrete scale from 0 — No turbulence — to 8 — Extreme turbulence. Because of the degree
of subjectivity involved in these grades, we prefer a coarser scale and for the purposes of

this study we will focus on a binary classification:

0 for Null or Light turbulence observations, contributed by both avars and pireps; this

category includes the first three grades of the original scale (0 through 2).

1 for Moderate or more severe turbulence observations, only provided through pireps;

this category includes the remaining 5 grades of the original scale (3 and higher).



3 THE VERIFICATION DATA 5

A three category analysis has also been done but has not been included in this study.
From an operational point of view, the interest of aviation safety is well translated into the
distinction between these two classes of potential turbulence encounters.

Each observation has a time stamp and is thus associated with a 3-hour time window
centered at a RUC forecast time. The number of observations for each time window is
on average approximately 500, with a large preponderance of avars, i.e. null turbulence,
observations. To limit the spurious effect of general aviation (i.e. small aircraft) pireps, and
of turbulence encountered at low altitudes, which frequently is not CAT, we will confine
our attention to records taken above 20,000 feet.

Clearly the observations are irregularly spaced and likely to underrepresent the turbulent
areas, since pilots tend to avoid them when possible (e.g. when they are warned by other
pilots flying ahead). A more subtle effect is the possibility that those pilots who have more
experience flying over areas that are climatologically subject to frequent turbulence could
be inclined to understate the turbulence phenomena and their intensity. In general, whether
a turbulence encounter is judged light, moderate or severe is largely dependent on the past
experience of the particular pilot reporting it. Furthermore, the severity of the turbulence
experience depends on aircraft size. We hope to have limited these effects by coarsening
the classification into a binary choice.

An additional source of error are delays in reporting the episode leading to inaccurate
times and locations of CAT events. The 3-hour window should limit the impact of the
first type of inaccuracy. The smoothness of the 3-dimensional spatial fields of index values
should limit the impact of the second.

On a more positive note, the synoptic conditions of the atmosphere conducive to turbu-
lence on average move eastward across the area of study, thus allowing for a sampling over
time more comprehensive than the sparse geographic locations would suggest. Also, CAT
is known to be linked at times to gravity waves breaking in the vicinity of mountainous
areas, and the coverage of the westernmost part of the continental US is ensured by the
large number of flight paths linking major airports of the central states to major airports
on the west coast.

Despite these issues, we consider our dataset representative of the ”average conditions”
during this winter period, and across the geographic area of the continental US. Table 1
compares the distribution of pilot reports among turbulence categories. Similarities between
the different periods to the distribution of pilot reports in our 4 days’ dataset (last row), for
the months of March in years previous to 1999 and for the entire March 1999, can easily be
assessed. As for coverage of the air traffic routes, Tables 2 and 3 list some statistics for March
1999 and the entire two-year period 1999-2000, respectively, for the 20 national Air Route

Traffic Control Center regions in the continental U.S., whose corresponding airport codes
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are listed row-wise. The areas controlled by the 20 centers are non-overlapping polygons
covering completely the continental US. One piece of information that can be gleaned from
both tables is the correlation (in value of 0.6) between the numbers of flights over an area
(including all commercial aircraft cruising over the area that did not take off or landed at
airports in the area), in the column labeled ”ovr/area” and the number of pilot reports
from an altitude over 20,000 feet that were recorded in that area, in the column labeled
"pireps/area”’. Note that both values are standardized by the area’s size. The reasonable
value of this correlations is an indication of the representativeness of our case study.

A key step in pre-processing the data is to match pireps and avars measurements,
recorded in continuous space and time, with the indices, computed on a discrete spatial
grid and at 3-hour time intervals. We match pireps and avars to grid points by first finding
the eight closest grid points to the observation location, i.e. the eight RUC output locations
which form a box containing the observation. For all indices but Richardson’s we pair the
observation to the maximum of each index’s eight values since the scientific definitions
associate higher turbulence potential to larger index values. For the converse reason the

minimum of the eight values of Richardson number is paired to the observation.

4 Univariate analysis and linear combinations of the CAT

potential indices

The traditional approach to turbulence forecasting considers each index in isolation, as an
independent piece of information. Thresholds for the indices are informally determined, and
regions, known as threat areas, are drawn on the maps where one or more indices exceed
these thresholds.

Despite current practice, the analysis of univariate distributions of the index values is
not adequate; simple data analysis indicates the necessity of a more complex solution. Fig-
ure 2 illustrates the conditional distribution of several indices for the two categories of CAT
observed. Although consistent patterns in the quantiles and means of the distributions ap-
pear, the spread of the distributions is large and overlapping. Moreover, there are a number
of outliers. This behavior is common to the entire suite of indicators and suggests that each
index taken in isolation cannot accurately discriminate different levels of turbulence.

In order to set a standard of comparison for our solution, we fit univariate and multivari-
ate logistic regressions to the binary classification of the observations into null and positive
turbulence (YES and NO events). For the univariate models’ predictions, pd0 and pd! are
shown not to exceed .6 at the same time (being .6 the baseline against which the forecast
skill of these models is measured). For the multivariate regression the best classification

(assuming equal importance of the two measures) is able to produce pd0 = pd! = 0.65. We
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will examine performances in more detail in Section 7.

5 Statistical models for classification

5.1 Linear Discriminants

A classical, linear solution to the statistical discrimination problem is Fisher’s linear dis-
criminant analysis (LDA). Given J categories we assume that an observation vector, say x,
associated with group j is distributed MN(u;, ). Thus there exists a p x (J — 1) matrix,
B, and a J x (J — 1) matrix © so that

x'B ~ MN(0,,1)

where x belongs to group j and ©; is the §* column vector for ©. Given prior probabilities

{pj,prior} of group membership, the posterior probability of belonging to group j is
J
Pjpost = Djpj,prior/ Z kalc,prior (1)
k=1
where

D, = ¢ X" B85/

Given a training sample the goal then is to estimate B and {©,}. These quantities can

be estimated by minimizing the minus log likelihood:
(XB-YO)(XB-Y0O)/2+C (2)

over matrices B and © subject to the constraint that ©7© = I Here Y is the n x J matrix
of indicators of class membership, X is the n x p matrix of covariates for the training sample
and C is an expression that does not depend on © or B.

In our problem, the multivariate distribution of the vector of indices’ values, condition-
ally on having observed YES events or NO events, does not satisfy Gaussian assumptions.
Moreover, the estimated within group covariances are far from constant across the two

groups. These departures suggest the need to consider other approaches.

5.2 Flexible Discrimination

We adopt a "flexible discriminant analysis” (FDA) paradigm (Hastie et al., 1994). At the
core of FDA is the assumption that a transformation exists, that — when applied to the
original covariates’ space — will map the observations to a new lower dimensional space
where the assumption of normality is sustainable, and LDA may be applied. Two nonpara-

metric techniques will be used to estimate the form of this transformation: multivariate
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adaptive regression splines (Friedman, 1991), and neural networks, from now on referred to
as MARS and NNs respectively.

6 Nonparametric regression estimators

Both MARS and NNs models are nonparametric regression techniques that are popular
for classification and regression problems. They both accomplish flexible modeling of high
dimensional data by estimating the functional form F'(-) under the nominal Gaussian errors
regression model

Y =F(x)+e

Conceptually, both of these methods have two parts: 1) a data-based determination of
basis functions and 2) a linear regression on this selected basis. Of course, in terms of

actual computation these two steps are carried out simultaneously.

6.1 MARS

In the MARS model,

M K,
F(x) =ag+ Y am [[[8km - @oem) — tem)]%- (3)

m=1 k=1
That is, F'(.) takes the form of an expansion in product spline basis functions, where the
number of basis functions (M) as well as the parameters associated with each one (degree
g and knot locations tg,,) are determined adaptively by the data. As mentioned above
we see that F'(x) is linear in ay,...,aps once the basis functions have been specified. The
procedure for determining the basis functions is an extension of the recursive partitioning
approach to regression and shares its most useful properties. It is efficient in finding low
local dimensionality of the function even if globally the function depends on a large number

of variables.

6.2 Neural Networks
For the NNs’ estimator, ,
F(x) =ao+ Z a;® (Nl + wlTx) . (4)
=1
The p-dimensional vector x of predictor variables is first transformed into M scalars by

M distinct linear combinations of its components. Each of the scalars, then, becomes the

argument of a sigmoid function, usually taken as
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or a rational polynomial approximation to it. Again, note that for fixed {w;} and p, F(x) is
a linear function in a. Technically, this neural network is classified as a single hidden layer
feed forward network. More complicated network architectures may be used and the reader

is referred to Cheng and Titterington (1994) for more background on such estimators.

6.3 Basis adaptation and dimension reduction

The specifications of the problem at hand seems to be well suited for both MARS and NN.
The single indices may be good at discriminating the different levels of turbulence when they
assume extreme values, but a multivariate classifier may be needed in less extreme cases.
In particular we expect an adaptive, non-parametric estimator to identify more complex
functional forms where interactions are needed.

The algorithms for fitting MARS models are composed of a forward fitting/backward
pruning procedure: the first stage of parameter estimation is followed by the elimination
of those terms that fail to provide a significant improvement in the overall goodness-of-fit.
The generalized cross-validation (GCV) criterion of model selection is used in the backward
stage, to control overfitting in the training step and to enhance the predicting skills, which is
the fundamental focus of our analysis. The NN model estimates all parameters by a robust
nonlinear least squares optimization, as implemented, for instance, in the FUNFITS Splus
module (Nychka et al. 1996). The number of hidden units (M) is found by minimizing a
GCV criterion with a cost factor of 2.

Both methods have some qualitative restrictions on the number of interactions that will
be included. MARS departs from the vertical, hierarchical, tree-like structure of recursive
partitioning and is able to represent functions whose dominant interactions involve only
a small fraction of the total number of variables. NNs represent interactions through a
sigmoidal transformation along a particular projection.

The efficacy of MARS in performing variable subset selection will also be of value
in determining redundancies within the set of indices. Although NNs can perform subset
selection by setting some of the coefficients (w;; in the notation of ( 4)) to zero, this estimator
is more difficult to interpret. Thus in assessing the importance of different indices, more
useful information is derived from the MARS fitting, particularly with regard to possible

simplifications and eliminations within the large suite of indices.

7 Prediction models for CAT

The purpose of this study is to evaluate the forecasting ability of FDA, and compare it to
the traditional approaches currently in place.

Exploratory tests (not reported here) suggest the need to aggregate data from several
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days to obtain a sufficiently representative number of positive turbulence records. We
ideally would like to substitute the statistical estimation of a weighted combination of
the indices’ values for the present heuristic assessment of them, and to suggest so, we
mimic an operational setting — within our limited set of test data — by the use of cross
validation. One time period is omitted from the 12, the different models are fit on the basis
of the remaining 11 time periods, and forecasts are made for the omitted period. Were the
statistical approach to be made operational, the fit would be based on recent accumulated
observations, and would be regularly updated for each issue and forecast time of the RUC

model.

7.1 TForecast skill

As already indicated, we use two statistics as a measure of the prediction skills of the models:
the probability of detection of positive turbulence, or YES events, (pd1) and the probability
of detection of null turbulence, or NO events, (pd0). Note that 1-pd0 is also known as
the ”false alarm rate”, not to be confused with the false alarm ratio defined in Section 2.
Because the probability of an event estimated by the statistical model may not be correct
from a frequentist metric (the estimates may suffer lack of calibration), we are interested
in evaluating the methods over a range of possible thresholds for such probabilities. The
threshold is varied over the range [0, 1] and areas/observations associated with probabilities
above the threshold are classified as turbulent, while the areas/observations associated with
probabilities below the threshold are classified as non turbulent. The net result is a relative
operating curve for pd0 and pd! showing the tradeoff between them as the threshold values
vary (Mason, 1982; Harvey et al. 1992).

The prediction exercise for each method consists of the following steps for each time

period:

1. Time period under study is omitted and the model parameters are estimated from

the remaining data.

2. The probabilities of membership to the two classes (null and positive turbulence) are

forecast for each observation in the omitted time period.

3. A series of threshold values uniformly spaced on (0,1) are applied to the probability

of membership to the null turbulence class.
4. pd0 and pd1 are computed from the results of applying each threshold.

After performing these steps for each time period the probabilities of detection are combined
across periods for the same value of threshold, being weighted by the number of positive/null

turbulence observations in each dataset.
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The final summary is a series of points (one for each threshold value) in the pd0-pd1
plane for each method. This set of points defines the 'frontier’ of performance for a method,
and the relative positions of the curves associated to each method give a visual summary of
performance. An ideal curve would approach the top and right sides of the pd0/pd1 region.

The results are presented graphically in Figures 3 through 5, where the objective stan-
dards for pd0, pdl > 0.6 are highlighted by two straight lines. The numbers appearing on
the curves indicate the values of the corresponding threshold for the probability. Shown are
thresholds that span (0,1) interval uniformly by steps of .1.

Figure 3 compares 7 univariate logistic regressions to the logistic fitted by the linear
combination of the set of 7 indices. These 7 indices have been chosen on the basis of their
individual performances, assessed by studies on larger data sets performed at NCAR. The
univariate logistic classification is simply a monotonic transformation of the original index
to a [0, 1] range. Thus, varying the threshold across the probabilities is equivalent to varying
a threshold in raw scale of the index and so we reproduce what is done in practice for a
single index. The advantage of the logistic regression is that these results are in the same
scale as the multivariate models. From this figure we see that the multivariate logistic
regression does seem to have more discriminatory power than the univariate approach, but
barely reaches the standard values of 0.6 determined as the minimum acceptable for these
two statistics.

Figure 4 compares the same curve obtained from the multivariate logistic regression
to the FDA+MARS model using the same 7 ’best’ indices and the FDA4+MARS model
that uses the complete suite. The gain from using the flexible technique is more important
than the gain of additional indices in the nonparametric model. The FDA+MARS model
performs well above the minimum standard. Last, FDA+MARS and FDA+NNs models
that use the full suite of indices are compared in Figure 5, which shows that the NNs model
is well above the minimum standard as well, but slightly dominated by the MARS model.

These comparisons suggest that our methods offer an important contribution in terms of
robustness and reliability, compared to the single index approach. Furthermore, the pd(-pd1
curves derived by FDA are the only ones to be in the upper right quadrant determined by
the 0.6 limit on both statistics, set as an objective standard of effectiveness. One problem,
however, is that the threshold probabilities seem to be distributed irregularly over the
curves’ span, hinting at a lack of calibration. If we notice what happens for the single index
models compared to the FDA models, however, it is clear how the most severe cases of lack
of calibration are found in the former and are somewhat limited in the latter. This provides

another hint at the gain in consistency and robustness achieved by our approach.
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7.2 Towards an operational implementation

The curves in Figure 3 through 5 only suggest a relative improvement of the nonlinear
techniques over the logistic model, and assess the achievement of a standard of quality, but
do not guarantee the performance of an operational implementation of such a standard. Here
we demonstrate that, even if not exactly calibrated, the threshold probabilities estimated
by our models are of operational utility, and we do so by showing that there is consistency
of pd0 and pd1 for a given threshold probability, between training and test data sets (i.e.
between fitted and predicted probabilities). Table 4 demonstrates this. The ten rows of
Table 4 correspond to ten equally spaced intervals that cover the range [0,1]. Say we fix
pd0 to be in the subinterval [0.6,0.7]. There exist a range of threshold probabilities that
deliver a classification of the observation in the training set satisfying the constraint on pd0.
What is the value of pd0 that we achieve when applying these threshold probabilities to
an independent test set? Table 4 shows that, on average (we use the same cross-validation
scheme described earlier), the value is still in the range [0.6,0.7], being 0.62/0.64 depending
on the model used. The same can be said for any subinterval (the i** row of the table
contains values within the interval ((¢ — 1)/10,4/10), for any i), and the same consistency
is true for pd1. In other words, what the results in the table guarantee is the following: we
can fit the parameters of our models (any of them, FDA+NN, FDA+MARS and logistic
regression) on a training set of observations, choose a probability threshold on the basis of
which the classification of the observations produces a desired pair of pd0,pd1, and apply
the threshold to the predicted values of the test set, expecting to achieve the same values for
pd0,pd1. Notice that, in order to economize space, each row of the table lists results for pd0
and pd1, but it should be considered a look-up table for these two statistics separately. In
fact for most of the threshold values, along a typical curve, a high value of pd0 corresponds

to a low value of pd1 and viceversa.

7.3 Model interpretation

The results detailed above suggest that the indices considered in isolation are not very
informative, and that a multidimensional approach performs better in predicting CAT.
Improvement has been found in models that allow for high degrees of interactions among
predictors and different subsets of predictors to be relevant in different subdomains of the
multidimensional space. To substantiate these conclusions, we give a more detailed look at
the variable selection procedure implicitly performed by MARS. MARS recursively chooses
among the predictors set the index that — alone or in interaction terms — is more ’useful’ at
discriminating 'YES’ and '"NO’ events. This choice, based on a ”least square type” criterion
is indicative of the intrinsic quality of the indices. By looking at the form that this choice

takes in the fitted models one can gather a measure of the relative ’discrimination quality’
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of the indices in the predictors set.

In Table 5 we analyze the twelve models fitted to the data. The table indicates how many
times (i.e. in how many terms) each index appears in each model, without distinguishing if
it appears in isolation or in interaction terms, i.e. combined with other indices. As the table
shows, some of the indices are left out consistently, or are rarely represented, thus becoming
good candidates for elimination and simplification of the models. Others are obviously very
important, particularly TKE3 which appears to be a cornerstone of every model.

The models do differ from each other, however, despite fundamental similarities in
the choices of the predictor subset. One explanation is that the adaptive selective fit of
MARS copes with the poor quality of the verification data through variation in the model
structure. This also is an explanation for the dominance of our procedure over the single
index approach. Through a multivariate model one borrows strength across the different
predictors. Of course both flexibility and adaptivity bears with it the risk of overfitting.
These results are acceptable across the entire test set and in contrast the single index’s
performances vary widely and have poor average performance.

To reinforce our claim that a multidimensional, nonlinear approach to the problem adds
valuable information to the predictive process, we present in Table 6 the large number of
two- and three-degree interaction terms. Each cell represents an interaction between two
indices, and the number in the cell indicates the number of terms which use that interaction,
out of all the twelve models fitted. We report results only for a subset of seven more heavily

used indices.

8 Discussion

In our application we suspect that minor improvements in the classification are still possible
but believe that overall we have arrived at a cogent solution for this problem. This statis-
tical work is a significant improvement over heuristic and potentially suboptimal methods
derived from subjective evaluation or linear approaches. Another measure of its success
is the interest in evaluating FDA in an operational mode by the Research Applications
Project (RAP) at the National Center for Atmospheric Research. This involves generating
predictions every three hours over several months for the coterminous US and comparing

results to pilot reports and avar measurements.

8.1 Extensions

We suggest some extensions of the present study in the light of its potential use as a
sequential forecast methodology. Were this method to be operational, its forecast skill

could be assessed as often as the weather forecast model produces forecast (every 3 hours
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in its present implementation), and there would be a valuable opportunity to judiciously

modify the method over time. In this perspective:

e Both space and time could be discretized differently. A narrow spatiotemporal win-
dow will possibly eliminate spurious observations unrelated to the the localized CAT
phenomenon. Conversely, larger windows accommodate the errors in pilot reporting
and the scarcity of turbulence observations. Although we have experimented with

different windows, the width might be chosen adaptively.

e With more data one could train different models for different geographical areas and
altitudes, or different synoptic conditions. This possibility raises a more strictly ’sta-
tistical’ issue, one of a model selection method when prior information is available
to guide such choice, if for instance we could subdivide the region of the prediction
(or the synoptic conditions at the time of the forecast) into areas where large degree
interactions are expected to be useful and areas where we expect simpler models to be
effective. We would like to include such qualitative information in a more deliberate

fashion. One benefit may be estimated probabilities with better calibration properties.

e As accelerometer data becomes available that indicates turbulence, weighting these
instrument results with pilot reports would certainly improve the quality of the ob-

servations.
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We believe that the quality of the available observations and the current state of the
indices’ development represent important limitations to the performance of the technique
we propose, and we consider this as just a first attempt to address the difficult problem
of CAT forecasting. Recent advances in turbulence measurement and reporting strategies
(Cornman et al., 1995) promise to make available widespread quantitative observations
of turbulence, with improved quality, objectivity and precision. This development should
dramatically improve our methodology, whose verification and tuning have been hampered
by the limited availability and subjectivity of the current set of observations. Nevertheless,
despite improved measurement and verification we believe the statistical methods used in

this work will remain an important tool for building forecast models.

9 Appendix

In the following, let z,y,z define a right-handed coordinate system in a plane tangent
to the earth’s surface and with positive x,y, 2z being eastward, northward, and upwards
respectively. Let u be the east-west () wind component and v be the north-south (y) wind
component, and let 7" be the absolute temperature. Then the indices used in this study are

defined as follows:

e Vertical wind shear:

VWS = |(0u/0z)? + (9v/0z)?|'/2.

e Horizontal wind shear:
HWS = (u/s)0s/0y — (v/s)0s/0x,
where s = (u? 4 v?)'/? is wind speed.
e Richardson number (e.g., Kronebach 1964):
Ri = N?/VWS?,
where N2 = (g/0 00/0z) is stability, @ is potential temperature.

e Turbulent Kinetic Energy (Marroquin 1998):
TKE3,5 = f(Ri, N?).

e Colson-Panofsky index (Colson and Panofsky 1965):
Col-Pan = VWS(1 — Ri/Ri),

where the critical value Ri is set to 0.5.
e Ellrod indices (Ellrod and Knapp 1992):

TI1 = VWS x DEF
TT2 = VWS x (DEF — Ap),
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where DEF = (D& + D)2,

Dgm = 0u/0z — 0v/0y is stretchlng deformation,
Dgyy = 0v/0z + Ou/0y is shearing deformation,
Ap = du/0z + 0v/Jdy is horizontal divergence.

Endlich empirical wind index (Endlich 1964):
V] x |dyp/dz],
where 9 is wind direction.

Brown’s index (Brown 1973):

Brownl: & = (0.3¢2 + D2T + DSH) /2,
Brown2: ®VWS?/24,

Where (, = ( + f = Ov/0x — Ou/0y + 22 sin g, is absolute vorticity,
f indicates the Coriolis frequency, and ¢ geographic latitude.

Reap MOSS predictors (Reap 1996):

NGM1 = DEF x |v|
NGM2 = DEF x |dT/dz|,

Dutton’s empirical index (M.J.O. Dutton 1980):
Dutton = 1.25HWS + 0.25VWS + 10.5.

Anomalous wind gradient (McCann, 1997):

AWG = (eurv + f/2,

Ceurv = K5|v|,

Kg = —(u/s)0vy/0x — (v/s)09/dy is streamline curvature.

Divergence tendency (McCann, 1997):
Div. ten. = 0A g /0t,

t is time.

Inertial-advective wind (McCann, 1997):
ABS = |v; — v |?,
where v; = |v-yv|/f,

= Ks|v|*/f

16
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As an example, we briefly present the definition of the Ellrod indices TI1 and TI2.
Empirical studies (Ellrod and Knapp, 1992) show that stretching deformation (Dg),

which is derived from the u (east-west) and v (north-south) wind components computed as

ou Ov
Dgr =5~ 3,

relates fairly well to observed CAT, but produces excessively large threat areas. The value

of Dg is then combined with shearing deformation (Dgyy), computed as

ov Ou
DSH_£+3_y

in the quantity
— 2 2 1/2
DEF == (D§p + D)

which is found to reduce somewhat the contour areas. Vertical wind shear (VWS), defined
as

VWS = |(0u/dz)? + (0v/8z)?|'/?,

correlates significantly to CAT as well, and so the product
TI1 = VWS x DEF

is formed. TI1 is one version of the currently used Ellrod indices. The second formulation

also includes divergence, which is defined as

_au ov

AH—%—I—ay.

Ay is typically much smaller than DEF but in some cases has been shown to contribute to
CAT potential. Thus, version TI2 of the index is computed as

TI2 = VWS x (DEF — Ap).
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Figure 2: Distributions of several indices at the locations of the verification data set, con-
ditional on the two different levels of turbulence observed. The boxplot at the top of each
panel corresponds to values of the index at locations where no or light turbulence was re-
ported, that at the bottom to values at locations where moderate or severe turbulence was
reported. From top left to bottom right: Brown 1 (1/2 power-transformed), TKE3 (1/2
power-transformed), Col-Pan (1/2 power-transformed), Endlich (1/2 power-transformed),
HWS (log-transformed), Ri (log-transformed).
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Figure 3: Operating curves for univariate and multivariate logistic regression models. On
the x axis is the probability of correctly labeling an observation as “no or light turbulence”
(class label 0); on the y axis is the probability of correctly labeling an observation as
“moderate or severe turbulence” (class label 1). A point on the plot corresponds to a specific
choice of a threshold for the posterior probabilities estimated by a model. Probabilities
below threshold would translate into prediction of class 0, and conversely, probabilities

above threshold would translate into prediction of class 1.
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Figure 4: Operating curves for MARS models and logistic regression. Full suite of indices vs.
7 more reliable indices, chosen on the basis of univariate analyses. See caption of Figure 3

for details.
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Table 1: Frequency distributions of pireps recorded in the month of March, for years 1993
through 1999, and of pireps in case study (last row). No turbulence encounters in categories
higher than 6 was recorded, and pilots never labelled an encounter "null to light”, that would
correspond to category 1. Pireps represent 90% of the dataset in our case study, avars (null

observations only) make up the rest.

0 2 3 4 5 6

1993 0.42 | 0.24 | 0.08 | 0.21 | 0.02 | 0.02
1994 0.42 | 0.24 | 0.08 | 0.23 | 0.02 | 0.01
1995 0.43 | 0.23 | 0.07 | 0.24 | 0.01 | 0.01
1996 0.43 | 0.23 | 0.07 | 0.23 | 0.02 | 0.03
1997 0.39 | 0.22 | 0.04 | 0.32 | 0.01 | 0.02
1998 0.42 | 0.19 | 0.09 | 0.26 | 0.01 | 0.02
1999 0.42 | 0.21 | 0.09 | 0.26 | 0.01 | 0.01
4 days | 0.35 | 0.19 | 0.10 | 0.32 | 0.03 | 0.02




Table 2: Number of flights over specific Air Route Traffic Control Center areas (listed in

the first column), and pireps recorded in the same areas, for March 1999. The second

column is the size of the area (km?), the third is the total number of commercial flights

that overflew the area (not landing, not taking off), the fourth is the ratio of the previous

two (i.e. overflight density), the fifth is the number of pilot reports recorded over the area

at an altitude of at least 20,000 feet. The sixth is the ratio of the previous column to the

area (i.e. pirep density) multiplied by 1,000. The correlation between column 4 and 6 is

0.60.
airport area (km?) | ovrflts | ovr/area | pireps | pireps*/area
ABQ (Albuquerque, NM) 616843 | 19752 | 0.03 283 0.46
CHI (Chicago, IL) 258921 36636 0.14 247 0.95
BOS (Boston, MA) 572151 13702 0.02 89 0.16
DC (Washington DC) 413105 41169 0.10 234 0.57
DEN (Denver, CO) 687536 48017 0.07 700 1.02
FTW (Fort Worth/Dallas, TX) 419770 27244 0.06 178 0.42
HOU (Houston, TX) 580765 | 11499 | 0.02 | 251 0.43
IND (Indianapolis, IN) 239752 69761 0.29 504 2.10
JAX (Jacksonville, FL) 494990 42240 0.09 106 0.21
KC (Kansas City, MO) 458859 46361 0.10 472 1.03
LAX (Los Angeles, CA) 463547 8867 0.02 162 0.35
SLC (Salt Lake City, UT) 1071881 34530 0.03 446 0.42
MIA (Miami, FL) 326840 11397 0.03 52 0.16
MEM (Memphis, TN) 368603 51556 0.14 143 0.39
MSP (Minneapolis, MN) 985467 40364 0.04 271 0.28
NY (New York, NY) 83412 29808 0.36 56 0.67
CLE (Cleveland, OH) 230969 62979 0.27 166 0.72
SEA (Seattle, WA) 673589 4175 0.01 258 0.38
ATL (Atlanta, GA) 316827 | 35840 | 0.1 | 132 0.42
OAK (Oakland, CA) 471378 9454 0.02 166 0.35




Table 3: Like Table 2, but for the entire years of 1999 and 2000. The correlation of column
4 and 6 is here 0.65.

airport area ovrflts | ovr/area | pireps | pireps*/area
ABQ 616843 778872 1.26 5266 8.54
CHI 258921 932496 3.60 5602 21.64
BOS 572151 348216 0.61 1709 2.99
DC 413105 | 1011000 2.45 3895 9.43
DEN 687536 | 1248384 1.82 13114 19.07
FTW 419770 | 695040 1.66 3401 8.10
HOU 580765 282528 0.49 3645 6.28
IND 239752 | 1562736 6.52 9497 39.61
JAX 494990 | 1082040 2.19 1805 3.65
KC 458859 | 1161216 2.53 10200 22.23
LAX 463547 | 255480 0.55 3458 7.46
SLC 1071881 | 958128 0.89 11170 10.42
MIA 326840 | 237048 0.72 986 3.02
MEM 368603 | 1323072 3.59 3401 9.23
MSP 985467 | 1092552 1.11 7660 .77
NY 83412 781104 9.36 1416 16.98
CLE 230969 | 1480248 6.41 4626 20.03
SEA 673589 90264 0.13 6531 9.70
ATL 316827 847584 2.68 2630 8.30
OAK 471378 242760 0.52 3604 7.65




Table 4: Consistency of pd0 and pd1 values corresponding to same thresholds for proba-
bilities estimated on the training set and predicted for the test set. The numbers in row %
should belong to the interval ((i—1)/10,7/10) for the models to produce consistent estimates
(notice that we are not asking that both pd0 and pd1 be in the same interval, but just that
pdO for the training set and the test set be in the same interval, and pd1 for the training set
and the test set be in the same interval; in fact, given the shape of a tipical curve there is a
trade off between pd0 and pdl and low values of one correspond to high values of the other.
The table is trying to economize space, but should be considered a lookup table for pd0 and
pdl independently of each other. Consistency is necessary in order to allow an operational
implementation: by choosing a pair (pd0,pd1) on the curve estimated by the training set
(whatever this pair’s values are), and deriving the corresponding threshold for the proba-
bility of a positive event on the basis of which classifying independent observations, we can

expect to see similar (pd0,pd1) for the latter.

FDA+ MARS | FDA+ NN | logistic
pd0 pdl pd0 | pdl | pd0 | pdl
(0,0.1) |0.05 0.04 0.05| 0.04 | 0.05|0.04
( ) |0.14 0.13 0.14| 0.13 |0.14|0.14
( ) | 0.24 0.23 0.23 | 0.22 |0.24|0.23
( )| 0.34 0.33 0.33 | 0.32 |0.34|0.33
( )| 0.44 0.42 0.42| 0.42 |0.44|0.42
(0.5,0.6) | 0.54 0.52 0.53 | 0.52 | 0.54 | 0.52
( )
( )
( )
( )

0.64 0.62 0.62 | 0.62 |0.64 | 0.62
0.73 0.72 0.73| 0.72 {0.74|0.73
0.84 0.83 0.83| 0.83 [0.84|0.83
0.95 0.95 095 094 [095|0.95




Table 5: The usage of the different indices in 12 models. The number at the intersection of

column 7 and row j indicates the number of terms in model 7 which include index j.

day 03.12.99 03.13.99 03.14.97 03.15.99 Total
UTC 3pm | 6pm | 9pm | 3pm | 6pm | 9pm | 3pm | 6pm | 9pm | 3pm | 6pm | Ipm

Brown 1 1 2 2 2 2 2 1 1 2 3 2 2 22
Brown 2 1 2 1 1 0 1 0 0 0 0 1 1 8
Col-Pan 0 8 1 1 2 0 3 0 4 6 2 4 31
Ellrod1 3 0 1 1 0 0 3 0 1 0 0 0 9
Ellrod2 0 1 0 0 1 0 0 1 0 1 1 1 6
Ri 5 1 3 3 4 5 2 4 1 4 3 1 36
TKE3 12 11 10 12 12 13 7 9 8 11 14 11 130
Dutton 0 2 0 0 0 1 0 0 0 0 0 0 3
Endlich 5 4 0 1 2 1 5 4 5 3 3 1 34
NGM 1 0 2 1 1 1 0 0 0 0 1 0 2 8
NGM 2 2 2 3 2 3 2 1 1 2 0 0 1 19
VWS 0 0 0 0 0 0 0 0 0 1 0 0 1
HWS 4 0 1 4 1 6 3 3 4 0 6 2 34
ABS 0 0 0 0 0 0 0 0 0 0 0 0 0
AWG 1 2 0 0 0 0 1 0 0 0 0 0 4
Div. Ten. 1 0 0 2 1 0 0 2 2 0 2 2 12
TKES5 0 0 1 0 0 0 0 0 0 0 0 0 1




Table 6: The interactions between the different indices in the 12 models fitted. The number
under the ith column of the jth row indicates the number of terms in the 12 models which
include both variable i and variable j as an interaction effect. The table is by construction
symmetric. The main diagonal contains the number of terms in the 12 models that contain

the correspondent index alone.

index | Brown1 | Col-Pan | Ri | TKE3 | Endlich | NGM 2 | HWS
Brown 1 0 9 0| 22 1 0 0
Col-Pan 9 1 1 21 6 1

Ri 0 1 0| 31 4 0 6
TKE3 22 21 31 13 14 12 19
Endlich 1 6 4 14 1 0 17
NGM 2 0 1 0 12 0 6 2
HWS 0 1 6 19 17 2




