Smoothing data and splines
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Outline

e Penalized least squares smoothers

e Properties of smoothers

e Cubic and thin-plate splines

e Cross-validation for finding
the smoothing parameter
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Estimating a curve or surface.

An additive statistical model:

Given n pairs of observations (z;,y;), i=1,...,n

v; = g(x;) + €

€;'S are random errors
and g is an unknown, smooth function.

The goal is to estimate g based
on the observations




A two dimensional example

Predict surface ozone where it is not monitored.
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Penalized least squares
Ridge regression

Start with your favorite n basis functions {b;}}_; The estimate has

the form
n
g(z) = > Brbr(z)
=1
where 3 = (31,...,0n) are the coefficients.

Let Xi,k = bk(azz) SO g — XB




Penalized least squares.

minimize over (3:

Sum of squares(3) + penalty on (3

i S (y — [X81)2 + \8THB
1=1

with A > 0 a hyperparameter and H a nonnegative definite matrix.

S T LY



In general
- log likelihood (y,8) + penalty (B8)

minimizing this makes sense as an estimate.

Spatial statistics estimates:

the basis ({b.}) and the penalty (H)
based on a spatial covariance.

Bayesian posterior mode:
T he penalty can also be a log prior density for (3

Once we have the parameter estimates these can be used to evaluate
g at any point.
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Solution to the Ridge Regression
Just calculus ...

e Take derivatives of the penalized likelihood w/r to 3,
e Sset equal to zero,
e solve for 3

T he monster ...

B = (X1X + \Hxoar




T he hat matrix for prediction

Gg=XB=XXTX+XH) 1 XxTy =AN)y

T here is a transformation , G so that

AN = X(XTX + 2B 1xT = (x&)(I + AD)"L(xa)T

( D is diagonal and XG orthogonal)




Linear smoothers

The vector of predictions:

g(wQ) (1)

@)
|

The smoother matrix: g = Ay

e A is an n X n matrix

e cigenvalues of A are in the range [0,1].

e g(z) in between the data found by interpolating the
predictions at the observations.

o [[Ayll <yl

For ridge regression (I + AD)~! is the smoothing function.
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Effective degrees of freedom

For linear regression trace of X1(X1TX)~1Xx7T gives the number of
parameters. (Because it is a projection matrix)

By analogy, trA(\) is measure of the effective degrees of freedom
attributed to the smooth surface

e trA()\) monotonically increases as A\ decreases
e trA(0) = number of basis functions
e trA(oo) = number of basis functions not penalized.

e effective degrees of freedom is a better parametrization than the
smoothing parameter.




T he classic cubic smoothing spline

Splines are the solutions to variational problems.

For curve smoothing in one dimension,

min 3 (vi — f(=0))? + X[ (f"(2))de

The second derivative measures the roughness of the fitted curve.
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Form of the solution

g is continuous and with continuous first and second

derivatives

It is a piecewise, cubic polynomial in between the obser-

vation points.

What does this have to do with ridge regression?
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Climate for Colorado

Elevations Spring average daily max temperatures
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Max/Min spring temperatures
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Cubic splines with different )\ s
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Form of the spline estimate

Estimate =

low dimensional parametric model + general function
Penalty matrix " hard-wired” to basis functions.

Divide the basis functions into two parts {¢;} and {y}

and only penalize the second set.

Yy = él ¢ (@) di=h e

J
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Form (continued)

i@ = 3 ¢i(@)d+ 3 vp(2)e
j=1 k=1

2 derived from {¢;}




In matrix format:
T; g = ¢i(z;), Kp;=vg(z;) and ... Q=K
g=1Td+ Ke

Find the parameters by the ridge regression:

mic?(y —Td - Ke)l'(y—Td — Ke) + X' Ke
C,

Solution:
d= (TTMIT)"11TNM~1y  (GLS)
M=K+

¢=(KKT'+2K)"1(y —Td) = (K + A1)~ (y — Td)




T he cubic smoothing spline

We just need to define the right basis functions and penalty.

A Strange covariance:

2 3
) uv/2 —u>/6 for u<w
klu,v) = { v2u/2 —v3/6 for u>w




Friends and strangers

Friends: ¢1(x) =1, ¢o(x) =z ,
Strangers: ¥;(x) = k(x, x;)

The penalty matrix: 2; ; = k(z;, z;)




wWhy does this work?

The ridge regression penalty is the same as the integral criterion.
Splines are described by special covariance functions known as re-
producing kernels , k(z,2") with ¢,;(z) = k(z, ;) the choice for cubic

splines has the property

[ i (@); (2)dw = j(z;) = k(zs, ;)

SO when
h(z) = £jv¢;c; and T1e = 0.

/ (R (2))2dx = 0" i (2)e;)?de = c'Ke
J




A 2-d thin plate smoothing spline

52 82f\2  [02F\°
mm Z(yz fz)2+>\/m2< f) +2 <8uéfv> I((,?Qi) dudv

Collection of second partials is invariant to a rotation.

Again, separate off the linear part of f.
f(z) = B1 + Boz1 + Bazo + h(x)

Thin plate spline kernel:

k(xz,z") = ||z — z'||°log(||x — ||) + linear terms
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Estimates for the ozone data
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Choosing \ by Cross-validation

Sequentially leave each observation out and predict it using the rest
of the data. Find the A that gives the best out of sample predictions.

Refitting the spline when each data point is omitted, and for a grid
of A values is computationally demanding.

Fortunately there is a shortcut ...




T he magic formula

residual for g(x;) having omitted y;

(i —9—i) = (i — 3:) /(L — A(N))i

This has a simple form because adding a data pair (x;,g_1) to the
data does not change the estimate.




CV and Generalized CV criterion
CV ()

” (yz gz)Q

2
(1/77,) Z(yz —g- Z) il (1/ ) Z (1 —A(A))Z Z>2

GCV(X)

S0 (v — §i)?
(1 —trA(\)/n)?

(1/n)

Minimize CV or GCV over )\ to determine a good
value




GCV for the ozone data

GCV( eff. degrees of freedom), the estimated surface

GCV-points , solid- GCV model,
dashed- GCV one
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GCV for the climate data

GCV( eff. degrees of freedom), the estimated curves
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Summary

We have formulated the curve/surface fitting prob-
lem as penalized least squares.

Splines treat estimating the entire curve but also
have a finite basis related to a covariance function
(reproducing kernel).

One can use CV or GCV to find the smoothing pa-
rameter.



Thank you!




