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What Is the point?

e Combining Information

— “interpolating fields for subsequent use as initial data in a model integra-
tion” (Bennett, 2002)

“statistical combination of observations and short-range forecasts™ (Kalnay,
2003)

“using all the available information, to define as accurate as possible the
state™ (Talagrand, 1997)
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Data ASS' ml | atl On Ddepa.rtnentlof Statistics
) ) University of Missouri-Columb
What Is the point?

e Combining Information

— “interpolating fields for subsequent use as initial data in a model integra-
tion” (Bennett, 2002)

Within the Perfect Model Scenario, these two goals are likely to coincide.
They aretwo very different goals outside PMS

— “using all the available information, to define as accurate as possible the

" (Talagrand, 1997)
What state?

Or perhaps better: state of what? Model-state or “reality”

PMS:. There exist model(s) within the given model class which could have produced the data.
(Borel “could”)

P S (ConElcina GGennhyvaical M odalewith Data ol A <mith



Data ASS' ml | atl On Ddepa.rtnentlof Statistics
) ) University of Missouri-Columb
What Is the point?

e Combining Information

— “interpolating fields for subsequent use as initial data in a model integra-

tion” (Bennett, 2002) Most useful modd -Siae(s) for for ing.

— “using all the available information, to define as accurate as possible the
state™ (Talagrand, 1997)

e Statistical Perspective: Fusing data (observations) with prior knowledge
(e.g., physical laws:; model output) to get an estimate of the (distribution
of) the true state of the physical system
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) ) University of Missouri-Columbi
What Is the point?

e Combining Information

— “interpolating fields for subsequent use as initial data in a model integra-

tion™ (Bennett, 2002) | Mogt useful model-state(s) for forecasting.

— “using all the available information, to define as accurate as possible the
state” (Talagrand, 1997) | Most useful model-state(s) for now-casting.

e Statistical_Perspective: Fusing data (observations) with knowledge
(e.g., ) model output) to get an estimate of the (distribution
of) the true state of the physical system

1OV
How might this be verified? falsified?measured even once?

Our distributions are in model-state spaces, not the “true state
space” (if such athing even existsl)

(Do we really gain/lose anything via this neo-platonic realist belief?
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and thus Department of Statistics
University of Missouri-Columbi

| Y X p( X)) \
pX|Y) = PLI2P2) (Bayes' Rule)
p(Y)
whereY are the observations
provided p(Y') @ X isthe model-state CKW: Zrue state?

1.3 Corollaries: Bayes’ theorem and marginalisation

The sum and product rules of eqgns (1.1) and (1.2) form the basic algebra of
probability theory. Many other results can be derived from them. Amongst the
most useful are two known as Bayes' theorem and marginalisation:

prob(Y | X, I) x prob( X | I)

- = 1.3
prob( Y1 [) s

probl X' | Y, I) =

EM INS]D&" 2 1 i I [7)
o oo X where | isthe “relevant background information at hand”.
| *'::.?\}]lh D.S. Sivia

For any interesting dynamical system, outside PMS
Prob(Y|l) will be zero!

There is no model trajectory (stochastic or deterministic) consistent with the data.
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Thisis (“l find this’) avery interesting question of applied
mathematics. How do we introduce “have a good 1dea”
(aka change | ) into a modelling paradigm?

Other very interesting maths guestions include:
How to implement a Kalman Filter in a high-dimensional
space with sparse observations?

How to compute the local orientation of Lyapunov.
Vectors?
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But, regarding model inadequacy and current models, | doubt
any of these are very relevant to improving operational weathe
forecasts...

When should you focus on getting a better approximation?
And when on better implementation?

>ef0rmu|ate ProblemJ Full Solution —> Approximation — Implementation in R™
robability Updating KFE filter.c
Growth of uncertainty. L yapunov V ector Breeding V ector

. S0 " |1 try to motivate this doubt, examine simple statistical
tests of relevance, and merely aim fior ad hoc methods with:

a) Intermally consistency. - D

b) empirical relevance @
E a = LONDONJE
¢) operational utility = ccormcnv

-
CALIFORNIA ISO

?Robust vs “ Accurate” ?
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The system (unknown):

a; 7 o = = P hze " - .
R e T e e i — & ;yj,i (2.1)
ayj.i B y - . hge.
f’i;, = chifji1.i {?ﬂ’j—l,i — y;+g+;} — cffji + ?;‘gi_ (2.2)

wherei = 1,... ,m and j = 1,... ,n and with cyclic boundary conditions
on both the #; and the ﬂj.i {Lh-’:l-t 18 B = %1, ﬁ{ﬂ+17ﬂ = ﬁ{])i’] and so GH}-
In the computations below F' = 10, m = 8 and n = 4. The constants b and
¢ are both equal to 10, so the small-scale dynamics are 10 time faster

The modél;

dx;
dt

= —Zi—2%i-1 + Ti-1Tiy1 — i+ F

x and x_tilde live in different state spaces!

What 1s meant by the uncertainty in “F” ?
From Smith (2001)

o S N irna CCeannhyaicall M odal e with [Data © A Mith



|sthere a*“correct” parameter value?
Or ameaningful P(x | s, 1) ?

(No)
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d_; = —%;_a®i—1 + Ti—1Zip1 — 5 + Pi(x,t), =1, m (2.3)

These equations for the model variables x are structurally similar to Equa-
tions 1 which determined the large scale x dynamics of the system,

. options we have explored for P;(x,t) include:

4

oo constant
Qo + 01T linear
Qg+ - I m-linear
Pix,t) = ¢ ) nonlocall
H & x) nonlocal2

I.I.ngg IID (Discretetir
| 1 Pi(x,t—1) + N(0,7) AR(1)

lgnoring H;, and H.,, each model class is imperfect:
The most appropriate form of P(x,t) depends on the user.

None provide accountabl e probabl I |ty forecasts
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Utter and Senseless Destruction of Dynamical |nformation

What 1sthis?

Where did this come from

Obs Space
' Projection Operator(s)

Q ) (?one-to-one?)

M odel-State Space = . !
P

Y esterday’ s EPS of Model-states One-day |ead EPS Model-state
Y esterday’ s EPS of Model-states M odel-states | nconsistent with the
evolved forward under the dynamics. dynamics but “closer” to the obs

\ A hara 1 tho faroract?



Non-Gaussian
Observational
Noise Model

- orie-to-one?)

M odel-State Space

Y esterday’ s EPS of Model-states One-day |ead EPS Model-state
Y esterday’ s EPS of Model-states M odel-states | nconsistent with the
evolved forward under the dynamics. dynamics but “closer” to the obs
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Non-Gaussian
Observational
Noise Model

- orie-to-one?)

M odel-State Space

Y esterday’ s EPS of Model-states One-day |ead EPS Model-state
Y esterday’ s EPS of Model-states M odel-states | nconsistent with the
evolved forward under the dynamics. dynamics but “closer” to the obs
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Non-Gaussian
Observational
Noise Model

- orie-to-one?)

M odel-State Space

Y esterday’ s EPS of Model-states One-day |ead EPS Model-state
Y esterday’ s EPS of Model-states M odel-states | nconsistent with the
evolved forward under the dynamics. dynamics but “closer” to the obs
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Utter and Senseless Destruction of Dynamical |nformation

Obs Space

M odel-State Space =

What 1sthis?

Where did this come from

' Projection Operator(s)
(?one-to-one?)

Model-states consistent with the dynamics,
“closer” to the obs,
tighter EPS of model-states at day 2

Can | use my knowledge of the dynamics to find more relevant states:
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vhal ISamanitolas
“Utter and Sensel ess Destruction of Dynamical Information?’

Observation
Obs-Covar M atrix

Unknown Manifold
(existence proof only)

|_ets make an ensemble!
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Now evolve the ensemble under
the (perfect) model.

|_ets make an ensembl el



Now evolve the ensemble unaer the (perfect) mode!:

And get a new observation...

Do | really want to make a KF update? ‘
_Or_

Can | use the fact that the model dynamics

(stochastic or deterministic) trace out the manifold

I Lbnwnr A1 ha ik ~canmnAat carnmand A A ractly 7D D
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Shree’s movieisanice illustration that with a
perfect model, simple nonlinear filters can
outperform his n+1% variant KF.

|s this surprising?

“Of course, in general these tasks (prediction,
separation, detection) may be done better by
nonlinear filters.”

(Kalman, 1960; first substantial footnote)

But this talk 1s on model error, not SIS (Indistinguishable
States | mportance Sampling). ..
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LSE &

De-fusing Perfect Model Expectations
(in real world data and systems)
L eonard Smith
Centre for the Analysis of Time Series
L ondon School of Economics

Pembroke College, Oxford
lenny@maths.ox.ac.uk

Kevin Judd!, Jochen Broecher, Liam Clarke
(Shree and Nell [and Jim and Chris|)
WwWw.|secats.org
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Figure 9.2 A schematic drawing of Galton’s Quincunx, from Galton

{1880, — £2)



Regression toward the Mean 179

I term this a thought experiment because, while Galton clearly in several
places described the variant of the Quincunx that performed the exper-
iment, there is no indication that he actually built the apparatus. And
having tried to build such a machine, I can testify that it is exceedingly
difficult to make one that will accomplish the task in a satisfactory man-
ner.

(our first hint of model error)
{and atypical theoretici an's response}
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Figure 9.2 A schematic drawing of Galton’s Quincunx, from Galton
1080, - £31




While the Galton Board is a mathematical model

... thisis Not A Galton (NAG) Board.
It IS nelther stochastic or chaotic; but at least It |
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Reality needn’t be complex,
© It merely needsto bereal.

. ¥

) What do you see when you
4 look at an ensemble predictio
system?

In the NAG board, this
corresponads to predicting wit

a collection (ensemble) of gol
balls... but i reality Isnot a

golf ball, then hew dowe
interpret these distriltions?

THAT IS THE QUESTION
FROM MODEL ERROR!
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KENWOOD &scitioscor

; Thisisarea physical systen
It’ s Interest here liesin the
fact that | cannot forecast it!

-
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il Short term (weather) forecasts are

Run 1 R very skilful both for statistical models
@l and for simulation models.

The best models | can find are Local

4 Polynomial Models (Smith 1994)

il generalized from the Farmer and

i 4l Sidorovich (1987) local linear models.

Run 2 W

Great several step rms error,

Informative Ensemble Information

Poor probability forecasts.

Run 3 g

Run 4

5-dim delay space,

delay of ~three steps,

locally optimised neighbourhooc
512 member ensembles

Nata oIl A <mith
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Why do good models go ba
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onsder many out-0r-Sampie analogue 10recaslts.
(Lorenz 1963)

nn Predicted {x)

G F. ,_ nn Observed (+) ] Each forecast iS¢
afixed lead time
(15 steps).

An“x" overa“+
IS good!

AR
g e S T

» wo o el S R B B

Base points are
chosen from nes
returnsin the
model-state spac

=
=
k.
[

_2 [ S I 11 1 1 | | I - I L1 1 1 I L1 1 |
7800 7820 7840 7860 7880 7900

Figure 1: Four voltage series with related forecasts, for details see the text. A) A sample of the
observations. B) Iterated ensemble forecasts using two different models. C) 15 step ahead forecasts of
near recurrences. D) Zoom of C showing state-dependent systematic model error.
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igure 1: Four voltage series with related forecasts, for details see the text. A) A sample of the
observations. B) Iterated ensemble forecasts using two different models. C) 15 step ahead forecasts of

near recurrences, D) Zoom of C showing state-dependent systematic model error.




The model dynamics look like a circuit, but not this circuit...

This suggests that that model inadequacy keeps “perfect” PDF
forecasts beyond our reach in a manner analogous to the way
observational noise rules out definitive RMS forecasts.
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|sthis apessimistic view?

Y es. in exactly the same sense that accepting that the sguare
root of 2 was an irrational number was a pessimistic choice
for the Pythagoreans!

It meant alovely [rational] mathematical dream was merely a
dream; and opened up huge possibilities for the advancement
of maths and applied maths.

THEOR‘/\

Nevertheless, it has proven more useful!
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So we have blatant inconsistency between theory and practice

How might we see thisin a 10’ dimensional model?

THEORV\
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_|
1
)

Estrangement
(but with 52 pts in 10"7 D)
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Any 51 points in a 10"7 space will lie in the same ‘line’.
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Distance to plane, starting 2004,06/01

NCEP

June 2004 — June 200
T2m (US and EU)

D =213 (6°x 6°)




B0

40

20




Histogram of one year of statistics.
For each day, the distance of target from the plane defines the unit distance
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DCLCCUINY CTNSCITIDIC ESU AlIYCITICTIL 1T PraCtice

Estrangement
(but with 52 pts in 107 D)

“Inflating” the variance will not “capture’ the verification.
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Lepioyanie ad 1Noc tests are valuaoie
You can make up lots of these type of consistency tests:

To verify relevance of claims of “optimality”:
| Gilmour, LA Smith & R Buizza (2001) Linear Regime Duration: Is 24
Hours a Long time in Weather Forecasting? JAS 58:3525-3539.

Or relevance of various approximations in adaptive obs:
J Hansen & LA Smith (2000) The role of operational constraints in
selecting supplementary observations. JAS 57 (17): 2859-2871.

Or indications of drift and systematic state-dependent model error:
D Orrell, LA Smith, J Barkmeijer and TN Palmer (2001) Model error ir
weather forecasting. Nonlin Processes in Geophysics 8:357-371.

Can we linearly interpolate climate sensitivity in HADAM3 parameters
D Stainforth et al, Nature (2005)

Rank Histograms in higher dimensions
Smith and Hansen (2004) MWR

Ill' skip these and look at model error in the big picture...
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R 10,000,000

P, Empirically ideal =0 modlel-stzte

‘o A,=Varationa Analysis at t=0




but P, is unlikely to prowde model-initial condltlon(s)

Variational Assimilation pulls the initial conditions away from the manifold.
What happens whenwe “let go” and forecast. ..

H/_mOJ rically ideal t=0 model-staie
A, = Variational Analysisat t=0

, = Shadowing Angalysis &t t=0
M%
mﬁ?ifO/ -




What happens when we “let go” and forecast...
Immediately falls toward somewhere on the manifold




We are allowed a projection operator to map Into a distribution;
we take this freedom even if we verify against P!

f nS, elone provides a
forecast distribution




(Note the state dependent drift
due to model inadequacy...)




But if we have taken ensembles seriously then
we have an ensemble of simulations from near




And an ensemble of model s mulations from near
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NOW Operationa

in R 10,000,000




Travelling Travelling
Triangles Tetraneda

S,

(Following Kevin Jucd)
in R 10,000,000




in R 10,000,000
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Data Assimilation with a human face:
Better balance between observations and model

Noise model: Gaussian and informative
P(X|I): extremely inhomogeneous

Perfect Bayes. ideal result (assuming perfect model class)

prob(Y | X, Frxpmh{"fl”
prob( X| Y, f]'—_——

prob( Y| I

(you can leave now: the problem if finished)

I you stay, prepare to go ad hoc (and sample somehow)
(Real World) Accountable Bayes (ABIS)
En+1 KF Ensembles
|SIS Ensembles

Use some large finite computational resource to level the playing field...
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NON-bBayesian by Lnoice (even witnin Fivio)

Starting with no knowledge of the current state of the system,
my prior isthe invariant measure;

(This picture, of course is only a sample from the prior...)
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\NOlN-bayesdll by oi1ce (ever witnin rFiv
Next | get an observation, knowing my obs noise is Normal:

g, £ 15 Placala

Applying Bayes Theorem, | get a posterior: this is the correct
answer any algorithm is ultimately judged against..

)
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\NOlN-bayesdll by oi1ce (ever witnin rFiv
Next | get an observation, knowing my obs noise is Normal:

AP : :
answer any algorithm is ultimately Judged against...

ith Data © A Mith
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ONree S Sl1aes

| want to compare avariety of DA methods that give me a
sample of points (each with weights) when estimating the
location of “truth” in PMS given noisy obs.

== |ISIS Obs Noise

To compare these (without dressing, & c) we will place a
series of epsilon balls about truth, compute the total weight
each method assumes to a ball of a given radius, then see
which method wins: ties count for both methods.

All sampling methods are somewhat ad hoc, | aim to
level playing field in terms of computational resource;
(this is done only roughly in the following graphs)
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Observations vs. Deterministic EnKF
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GDIS vs. Observations
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As models improve, coping with model inadeguacy
Will become more important, not |ess.

(we'll have more to gain!)

And while in a sense the problem will be come more tractable
It will never go away (if we are looking for things like PDFs)

There s no stochastic ‘fix’.
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(Con)Erncina CGennhbyacal Modale with Data

The debate’s over:
Globe is warming

Politicians, corporations and T
religious groups differ mainly oS la=
on how to fix the problem
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Olaf Roemer (Philosophical Transactions; June 25, 1677) reported afinite
speed of light. Generally disbelieved until Bradley gave independent
confirmation of the finite speed of light in January 1729.

In ~1953 the speed of light was revised by several standard
errors, amost certainly due to “anchoring” (the search and
“correction” of systematic experimental errors until the result
agrees with previously accepted values, and no further).

If anchoring has this effect on the empirical measurement of c,
then can we really ignore it in estimates of “climate sensitivity”
(Thisis nothing to be embarrassed abouit)
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Climate Modelling is in-sample by definition.

Thisis nothing to be ashamed of (but should not be ignored).
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Uncertainty)in Climate Sensitivity

Climate sensitivity is defined as the equilibrium global mean surface temperature
change for adoubling of CO, levels.
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To sample parameter values, however, the input distribution
determines the output distribution:

Details of the input distribution determine general
shape of the sensitivity distribution!
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How should we best judge if aclimate model 1s realistic?
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Direct test of linear prediction of climate sensitivity of (M urphy
et al 2004); color indicatesthe error (in standard deviations)
Islessthan one, Elzici< up to two, greater than two.

~ The approximation is not
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So where are we?
Aim for Deployable Probabilistic Forecasts with:
XXOOKKKRROODOIGORKXXXXXKXX Rel evance

|nformative

Assigns non-trivial probabilities (to what happened, n
what is the chance x happent

Suffers only from sampling finite N effects

Towards better ignoring best
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So now you have to make a choice:
Y ou take the blue pill and the lecture ends, you wake-
up in your bed and happlly do mathematics...

%’%“‘% 1 gé

Y ou tthe red pill, d try to do physics
knowing all models are wrong.

“Remember that all | am offering is the truth. Nothing more”
Mor pheus
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Nancy Cartwright (1983) How the Laws of Physics Lie, OUP

LA Smith (2003) Predictability Past Predictability Present. ECMWF.
soon to be in a CUP book (ed. Palmer).

K Judd and LA Smith (2001) Indistinguishable States | , Physica D 151: 12¢
151 &

LA Smith (2000) Disentangling Uncertainty and Error, in Nonlinear Dynamic
and Statistics (ed A.Mees) Birkhauser.

M. Altalo and LA Smith (2004) Environmental Finance 6 (1) 48-49.

Stainforth et al (2005) Uncertainty in predictions of _
Climate Response Nature 443,403-406 : G“matemdl.cﬁm_

LA Smith (2002) What might we learn from climate forecasts?, Proc.
National Acad. Sci. 99: 2487-2492

D Orrell, LA Smith, J Barkmeijer and TN Palmer (2001) Model error in

weather forecasting. Nonlin Processes in Geophysics 8:357-371.

WWW. Isecats.org lenny@maths.ox.ac.uk
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|s there an alternative approach, which uses the same resource
to find a much higher resolved estimate of (an inferior) PDF?

lkeda : Some sets of indistinguishable states (Model is perfect)
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oLered These are, of course, inaccessible even in the perfect model scenario.

~ Whatever we do, we aim to use probability calculus coherently,

but it iIsno longer clear we want to approximate the Perfect Bayes answer
In a naive Bayesian fashion! (balance prior, obs, dynamcis)

Prior PDF

O
™

Obs. Likelihood

o
'

=
=t
=

©
Q

=
o

o ©

Thisisavery pretty picture;

Try computing the “normalization” from a sample of the
true blue density (few ~50 in a 107-D space...) and see
how much information from the prior and the likelihood
IS preserved...
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Model error (better known as Model |nadequacy)

Data Assimilation:
From Observations to Model State(s) One-to-Many
?seguential ?
Simul ation:
Current Model-state to future model-state  ?one-to-one?

Forecast:
Future model-state(s) to physical forecast ~ 7scenarios?
oint?
?2user-specific?
Nonlinearity Couples all of this!

In its ssimplest terms, a “model” consists of:
A noise model (of the obs)
A dynamical model (deterministic or stochastic)
Two Projection operators

I the model I's perfect, everything iswell defined; if not, not.
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|s there an alternative approach, which uses the same resource
to find a much higher resolved estimate of (an inferior) PDF?

lkeda : Some lkeda : H(0.264,-0.335) 95% of set
L] ﬂ1 T T T T T T T T

0 F
01
-0.2 |
-0.3 |
-04
-0.5
-06
0.7 |
08}

-0.9
0.24 (}26 [}EB E}S [}32 E}34 [335 DE‘:B E}4 [}42 0.44

Probability Calculus still provides the ultimate goal: but given
f| n| te resources Whl ch approach Is more valuable?
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Traditional ams of state estimation:

X(ty) current model state
S  observations

P(X('[ 0) | S, Fa(x), a, n) F.(x) dynamica model

a parameter values
n obs noise model

Traditional aim of forecasting (in statistics)

PX(t>tp) | s, Fa(X), & n)

In cases where F_(X) Isimperfect (i.e. In practice),
these two procedures may have different target
different distributions for P(x(ty)).

Y ou will have understood the main point of thistalk
If you leave It unsure of the target in the second case
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y Choice (even within PMS)

D prob(¥Y | X, 1) x prob( X |])
PO e——— T T

prob(Y | /)

where | isthe “relevant background information at hand”.
D.S. Sivia

Even given a perfect model, if we want to move beyond (1.3) then we will
be forced to sample the distributions.

Given the model, we can build an Accountable Bayes Importance Sampler
(ABIS) which will yield weighted posterior ensembles which are
accountable (suffer only from finite sample effects).

| SIS (Indistinguishable States Importance Sampler) ignore our ability to
sample the prior, but arguably give more useful posterior ensembles than
ABIS for any finite computational resource!

Even the EnKF is likely to beat ABIS if only small computational resource
Is available.
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s Weerk you lNadve L0 [Tiale a CHOICE Ol NOow/wiielier 10 Mouct realily:

The Truth isout there (v zifi=/Sizi

Thereisnospoon  (Pry=ics)

Prediction is very difficult, especially about the future.
< Niels Bohr

The future will be better tomorrow.
Dan Quayle

Maybe we oughta help him see,
the future ain’t what it used ta be.
Tom Petty i _'._ L = L




Even inside PMS, the justified resource will depend
on the user’s ams

HIS GUY’'S
TAKING A LOOK AT THE HIGH TEMPERATURE Ngv R RO

: = WILL BE BETWEEN 40
TOMORROW’'S WEATHER, L B B N

200 ABOVE/

Aim: Deployable Probabilistic Forecasts with
Accountanility, Reselution, and Relevance

- N - Py —

|nformative

Assignsinoen-trvia prenabiities (tewhat happened; N
Whak IS the Chance X Nappent

Suliersienly fireny sampling finite N effects

(ConElcina GGennhyvaical M odalewith Data ol A <mith



S LVECLIO IOT SRSSINENRR RO 00 Las Dl NI el

L. KuzNETSOV

Deparmment af Mothemaries Cnfversiy of Noreh Carolime of Chaped B, Chaped 8ill, North Cormlir

K. I

Depuenment of Arrospleric Scienres and faarine o Geophysics o
Loaw Angedes, O

anenery Phisics, Dwlveesind of Cafiireain, Led Aupefos,
1

C. K. R T Joxes

Diepartmnent of Machemarics. Untvernty of Norot Caralime ar Chapet! MR, Chapel W8, North Carsling

'EI

S
n
y
B
'“"\-u..\_\_hb_\ )

-2 =1 0 1 2

Fig. 5. Trajectories of the full system and the model in the corotating frame, shown for 8 < ¢ <
124; AT = 1.5, o = 00K, p = 0,02, ¥. = 2, &, = 1. Small symbols: vortex and tracer positions at
the observation times ¢, = 9, 105, 12, Trangles: xf (full system), circles: x (model before updates).
stars: x7 (analysis state). Arrows: correction vectors. Large symbaols: final positions at ¢ = 12.4, Vortices
are shown i blue, racer in green.




If we had enough data, could we predict anything?

Alt: If we had enough data, could we predict more profitably?
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RESuuUlLe dllolall Ul
(Identifying Weakest Links)

Daily Mail, Wednesday, March 24, 2004

improved Non:Science

@lSErValions SElESIO
A | Dbepleyment

(Inthis particular case, obs were more valuable than theory)
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Daily Mail, Wednesday, March 24, 2004

improved Non:Science
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(In'this particular case, obs are more valuable than theory)

S S (Con)Eincina CGennhbyacal Modale with Data ol A <mith



IN practice: Probability Torecasts do not have 10 be accountable to be usetul!

Weather roulette

Wager £100 each day on the temperature at Heathrow, betting an amount
proportional to your predicted probability of that outcome (Kelly Betting).

How would a probability forecast based on the ECMWF EPS fare against a
house that set its odds using climatology?
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Head to head comparisons of probability forecasts allow
|nS|ght on resource aIIocatlon at least for a subset of users...




