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e Likelihoods for three examples.
e Prior, Posterior for a Normal example.

e Priors for Surface temperature and the CO-, problem.
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T he big picture

The goal is to estimate ‘parameters’: 6

System States
e.g. temperature fields from Lecture 1 or the surface
fluxes of C'O>

or

Statistical parameters
e.dg. such as climatological means or the correlation
coefficients.

We also have ...

Data

Whose distribution depends on these unknown quanti-
ties (0).



Reversing roles in the problem:
‘inverse probability’

We start by specifying the conditional distribution of
the data given the parameters.

We end by finding the conditional distribution of the
parameters given the data.



Likelihood

L(Y,0) or [Y|0]
the conditional density of the data given the parameters.

Assume that vyou know the parameters exactly, what is
the distribution of the data?

This is called a likelihood because for a given pair of
data and parameters it registers how ‘likely’ is the data.



Data is ‘unlikely’ under the dashed density.



Some likelihood examples.

It does not get easier that this!
A noisy observation of 6.

Y =6+ N(0,1)

Likelihood:
1 (v—6)?
L(Y, 6) — ﬁe 2
Minus log likelihood:
Y — 0)2
log(L(Y,0)) = X = 4 1og(m) /2

-log likelihood usually in simpler algebraically
Note the foreshadowing of a squared term here!



Temperature station data
Observational model:

Y; = T'(z;) + N(0,0°) for j=1,...N
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combining
1 —Z (Y, T(xJ»?
L(Y,0) = j=il T a2
0 = may®
Minus log likelihood:
Y (Y — T(2))?
—log(L(Y,0)) = Y ~— =+ (N/2)log() + Nlog(o)
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A simplifying complication
It will useful to express the relationship as

Y =HT + e

e Y IS the data vector.

e [ is an indicator matrix of ones and zeroes that maps
the stations to the grid.

e /' is the huge vector of all temperatures on the grid.

e ¢ is the measurement error vector (0, R).

Minus log likelihood:

—log(L(Y,0)) + Nlog(|R|)

T he quadratic thing again!



C'O-> Inverse Problem

Z (data), = (concentrations) and u (sources).

zj = hj(z;) + N(O, R)
for y=1,... N
and

z; IS determined by the dynamical model:
Tit1 = P(x;) + G(u)

(z;—h(z;))?
1 - Zi,j -

R

L(Z,u) =



Minus log likelihood:

—logL(Z,u) = + (N/2)log(r) + Niog(o)

sources (u) concentrations (x)



Priors

To get the conditional distribution of the parameters
given the data we need the distribution of the param-
eters in the absence of any data. This is called the
prior.

The simplest prior for 6
For the first example take 6 to be N(u, o).

If this seems bizarre to put a distribution on this un-
known quantity then you are probably following this lec-
ture!

We are now ready to use Bayes theorem



Bayes T heorem again

T hree ways of stating Bayes Thm:

e (parameters given data) «
(data given parameters) x (parameters)

o [0]Y] o [Y]6][6]
e conditional density given the data
x L(Y,theta) prior(09)

Posterior
The conditional density of the parameters given the
data



Back to first example
Y =6 + N(0,1)

1 w-0?2
YOl = —e 2

1 (0-w?
e 252
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Simplying the posterior for Gaussian-Gaussian

(Y=6)2  (6—p)? (Y*—)2

B]Y] x [Y[0][] x & 2 ~ 22 oce 2

posterior mean:

Y*= Yo+ p)/(1+0?)
Y*=p~+ (Y —pw)o®/(1+07)
Remember that 6 has prior mean pu
posterior variance:

(0")? =0%/(1 4+ 0?)
(") =0" —1/(1 + o)

Without other information Y has variance of 1 about 6.



As Jeff Anderson says:
products of Gaussians are Gaussian ...

Where do these products come from? What are statis-
tical names for them.

It is quite easy to consider priors where the algebra to
find the posterior is impossible! Most real Bayes prob-
lems are solved numerically.

More on this topic and MCMC at the end this lecture.
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-log posterior
(0 — p)?
202

+ —log prior

_|_

+ constant

fit to data 4+ control/constraints on parameter

This is how the separate terms originate in a vari-
ational approach.



T he BiIg Picture

It is useful to report the values where the posterior
has its maximum.

This is called the posterior mode.

Variational DA techniques = finding posterior mode

Maximizing the posterior is the same as minimizing
- log posterior.



Prior for the surface temperature problem
Use climatology!

T he station data suggests that the temperature field is
Gaussian:

N(u,>) and assume that pu > are known.

We have cheated in Lecture 1 and estimated the mean
field 1(z) and covariance function from the data.

There is actually some uncertainty in these choices.



Finding the posterior temperature field for a
given year.

Posterior = Likelihood x Prior
Posterior «x N(HT,R) x N(u,X)

Jeff Anderson: Products of Gaussian are Gaussian ...

After some heavy lifting:

Posterior= N (T, P%)

T=pu+>HH'SH+ R) (Y — Hn
P*=Y —YH(H'>XH+ R) 'H'S

These are the Kalman filter equations.



Another Big Picture Slide

Posterior = Likelihood x Prior
-log Posterior = -log Likelihood + -log Prior

For the temperature problem we have

-log Posterior =

+ other stuff.

(Remember T is the free variable here.)



The CO> Problem

Prior

For the sources: N (i, Puk)-
For the initial concentrations: N (u., P.)

-log posterior



Some Comments

Dynamical constraint:

Given the time varying sources and initial concentra-
tions all the subsequent concentrations are found by the
dynamical model.

Due to linear properties of tracers
X = QU

C2: after you generate this matrix you will have used up
your computing allocation!

Posterior:
Easy to write down but difficult to compute focus on
finding where the posterior is maximized.

A future direction is to draw samples from the posterior.



