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The big picture

The goal is to estimate ‘parameters’: θ

System States
e.g. temperature fields from Lecture 1 or the surface

fluxes of CO2

or

Statistical parameters
e.g. such as climatological means or the correlation

coefficients.

We also have ...
Data
Whose distribution depends on these unknown quanti-
ties (θ).
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Reversing roles in the problem:
‘inverse probability’

We start by specifying the conditional distribution of
the data given the parameters.

We end by finding the conditional distribution of the
parameters given the data.
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Likelihood

L(Y, θ) or [Y |θ]

the conditional density of the data given the parameters.

Assume that you know the parameters exactly, what is
the distribution of the data?

This is called a likelihood because for a given pair of
data and parameters it registers how ‘likely’ is the data.
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E.g.
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Data is ‘unlikely’ under the dashed density.
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Some likelihood examples.

It does not get easier that this!
A noisy observation of θ.

Y = θ + N(0,1)

Likelihood:

L(Y, θ) =
1
√

π
e−

(Y−θ)2

2

Minus log likelihood:

−log(L(Y, θ)) =
(Y − θ)2

2
+ log(π)/2

-log likelihood usually in simpler algebraically

Note the foreshadowing of a squared term here!
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Temperature station data
Observational model:
Yj = T (xj) + N(0, σ2) for j = 1, ..., N

L(Y, θ) =
1

√
πσ

e
−(Y1−T (x1))2

2σ2 ×
1

√
πσ

e
−(Y2−T (x2))2

2σ2 ×...×
1

√
πσ

e
−(YN−T (xN ))2

2σ2

combining

L(Y, θ) =
1

(
√

πσ)N
e
−

∑N
j=1

(Yj−T (xj))
2

2σ2

Minus log likelihood:

−log(L(Y, θ)) =
N∑

j=1

(Yj − T (xj))2

2σ2
+ (N/2)log(π) + Nlog(σ)
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A simplifying complication
It will useful to express the relationship as

Y = HT + e

• Y is the data vector.

• H is an indicator matrix of ones and zeroes that maps
the stations to the grid.

• T is the huge vector of all temperatures on the grid.

• e is the measurement error vector (0, R).

Minus log likelihood:

−log(L(Y, θ)) ∝ (Y −HT )TR−1(Y −HT )/2 + Nlog(|R|)

The quadratic thing again!
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CO2 Inverse Problem

Z (data), x (concentrations) and u (sources).

zj = hj(xi) + N(0, R)

for j = 1, ..., N

and

xi is determined by the dynamical model:
xi+1 = Φ(xi) + G(u)

L(Z, u) =
1

(
√

πR)N
e
−

∑
i,j

(zj−h(xi))
2

2R2
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Minus log likelihood:

−logL(Z, u) =
(I−1)∑
i=0

N∑
j=1

(zj − h(xi))2

2R2
+ (N/2)log(π) + Nlog(σ)

sources (u) concentrations (x)
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Priors

To get the conditional distribution of the parameters
given the data we need the distribution of the param-
eters in the absence of any data. This is called the
prior.

The simplest prior for θ
For the first example take θ to be N(µ, σ).

If this seems bizarre to put a distribution on this un-
known quantity then you are probably following this lec-
ture!

We are now ready to use Bayes theorem
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Bayes Theorem again

Three ways of stating Bayes Thm:

• (parameters given data) ∝
(data given parameters)× (parameters)

• [θ|Y ] ∝ [Y |θ][θ]

• conditional density given the data
∝ L(Y,theta) prior(θ)

Posterior
The conditional density of the parameters given the

data
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Back to first example
Y = θ + N(0,1)

Likelihood

[Y |θ] =
1
√

π
e−

(Y−θ)2

2

Prior for θ

[θ] =
1

√
πσ

e
−(θ−µ)2

2σ2

Posterior

[θ|Y ] ∝
1
√

π
e−

(Y−θ)2

2
1

√
πσ

e
−(θ−µ)2

2σ2
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Simplying the posterior for Gaussian-Gaussian

[θ|Y ] ∝ [Y |θ][θ] ∝ e
−(Y−θ)2

2 −(θ−µ)2

2σ2 ∝ e−
(Y ∗−θ)2

2σ∗

posterior mean:

Y ∗ = (Y σ2 + µ)/(1 + σ2)

Y ∗ = µ + (Y − µ)σ2/(1 + σ2)

Remember that θ has prior mean µ

posterior variance:

(σ∗)2 = σ2/(1 + σ2)

(σ∗)2 = σ2 − 1/(1 + σ2)

Without other information Y has variance of 1 about θ.
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As Jeff Anderson says:

products of Gaussians are Gaussian ...

Where do these products come from? What are statis-
tical names for them.

It is quite easy to consider priors where the algebra to
find the posterior is impossible! Most real Bayes prob-
lems are solved numerically.

More on this topic and MCMC at the end this lecture.
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Some posteriors for this example

DATA = 1.5, PRIOR N(0, (1.5)2

Likelihood, POSTERIOR
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Prior not very informative

DATA PRIOR N(0, (2.5)2

Likelihood POSTERIOR
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Prior is informative

DATA, PRIOR N(0, (.5)2

Likelihood POSTERIOR
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-log posterior

(Y − θ)2

2
+

(θ − µ)2

2σ2
+ constant

−log likelihood + −log prior

fit to data + control/constraints on parameter

This is how the separate terms originate in a vari-
ational approach.
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The Big Picture

It is useful to report the values where the posterior
has its maximum.

This is called the posterior mode.

Variational DA techniques = finding posterior mode

Maximizing the posterior is the same as minimizing
- log posterior.
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Prior for the surface temperature problem

Use climatology!

The station data suggests that the temperature field is
Gaussian:

N(µ,Σ) and assume that µ Σ are known.

We have cheated in Lecture 1 and estimated the mean
field µ(x) and covariance function from the data.

There is actually some uncertainty in these choices.
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Finding the posterior temperature field for a
given year.

Posterior = Likelihood × Prior
Posterior ∝ N(HT, R)×N(µ,Σ)

Jeff Anderson: Products of Gaussian are Gaussian ...

After some heavy lifting:

Posterior= N(T̂ , P a)

T̂ = µ + ΣH(HTΣH + R)−1(Y −Hµ)

P a = Σ−ΣH(HTΣH + R)−1HTΣ

These are the Kalman filter equations.
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Another Big Picture Slide

Posterior = Likelihood × Prior

-log Posterior = -log Likelihood + -log Prior

For the temperature problem we have

-log Posterior =

(Y −HT )TR−1(Y −HT )/2 + (T − µ)TΣ−1(T − µ)/2

+ other stuff.

(Remember T is the free variable here.)

23



The CO2 Problem

Prior

For the sources: N(µu,k, Pu,k).
For the initial concentrations: N(µx, Px)

-log posterior

(I−1)∑
i=0

N∑
j=1

(zj − hj(xi))
TRj

−1(zj − hj(xi))/2 +

K∑
k=1

(uk − µu,k)
TP−1

u,k (uk − µu,k)/2 +

(x0 − µx)
TP−1

x (x0 − µx)/2 + constant
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Some Comments

Dynamical constraint:
Given the time varying sources and initial concentra-

tions all the subsequent concentrations are found by the
dynamical model.

Due to linear properties of tracers

X = ΩU

Ω: after you generate this matrix you will have used up
your computing allocation!

Posterior:
Easy to write down but difficult to compute focus on

finding where the posterior is maximized.

A future direction is to draw samples from the posterior.
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