
GASpAR User’s Guide

Duane Rosenberg, Aime´ Fournier,
&

Annick Pouquet

Geophysical Turbulence Program
Turbulence Numerics Team (TNT)

of the
National Center for Atmospheric Research

Boulder, Colorado USA

c©2003-2006 University Corporation for Atmospheric Research

Abstract

GASpAR is a an object-oriented, operator-based spectral element code, whose
primary purpose is to solve a variety of PDEs in multiple spatial dimensions
using adaptive high order spectral element methods. This document will
guide the user through the steps required to run the code on serial and par-
allel platforms, and provide a detailed description of the code design and
many of the underlying algorithms. While the focus of the guide will be
on the solution of the time-dependent Navier-Stokes and advection-diffusion
equations, the design considerations will enable one to create other types of
solvers (e.g. steady-state and time-dependent) using the existing operator
objects and methodologies.

Contents

1 Introduction 1

2 Operational basics 3

2.1 A look at the source tree . 3

2.2 Running test problems: A quick start 4

2.3 How to use the command line and the parameter file 7

2.4 Mesh Generation . 12

2.5 Restarts . 13

2.6 Output preliminaries . 13

3 Setting up your own problem 16

3.1 GUserConfig . 16

3.2 GUserInit . 17

3.3 GUserStart . 19

3.4 GUserTimeDep . 19

3.5 GUserLogConfig . 20

3.6 GUserLogUpdate . 22

i

3.7 GUserTerm . 22

3.8 Systems that have been tested 22

4 Command line utilities 24

4.1 Grid generation with gdd . 24

4.2 Data profiling with ginfo . 26

5 Manipulating output: MATLAB utilities 28

5.1 gbin input . 28

5.2 meshelem . 29

5.3 plotlogf . 29

5.4 biopelem . 30

5.5 unopelem . 31

5.6 manycall . 31

5.7 ntrpelem . 32

5.8 streelem . 33

5.9 specelem . 33

6 I/O with GBin 35

6.1 GBinWriter . 36

6.2 GBinReader . 38

6.2.1 Some examples . 41

7 GASpAR Utility classes and functions 43

ii

7.1 Linked lists for managing fields and other things 43

7.2 ParamReader . 44

7.3 MeshReader . 47

7.4 MTK . 49

8 GASpAR: In depth 50

8.1 Temporal and dynamically adaptive spatial discretizations . . 52

8.1.1 Adaptive-mesh geometry 52

8.1.2 Discretization of a nonlinearly coupled dynamical PDE
system . 54

8.1.3 Implications for code design 57

8.1.4 Continuity and global assembly of nonconforming ele-
ments . 58

8.1.5 Modified preconditioned conjugate-gradient algorithm . 60

8.1.6 Adaptive mesh formulation 61

8.2 Results for adaptive (non)linear advection-diffusion simulation 66

8.2.1 Adaptive heat-equation solution results 67

8.2.2 Adaptive linear-advection simulation results 70

8.2.3 2D Burgers equation 72

A Appendix: Sample GASpAR parameter file 81

B Appendix: Preprocessor definitions 83

C Appendix: Spectral-element formalism 84

iii

D Appendix: Contact information 89

iv

Chapter 1

Introduction

The GASpAR(Geophysical and Astrophysical Spectral element Adaptive
Refinement) code is designed to solve a variety of PDEs using adaptive high-
order spectral element methods. We are strongly motivated by the following
requirements: The code must

• allow for a variety PDE solvers

• allow for a variety of boundary conditions

• provide adaptive mesh capability

• provide a variety of time-stepping schemes

• be capable of running serially and on a distributed or shared memory
parallel system.

These considerations suggest that an (native) object-oriented approach be
taken for the code development. The code is written in C++, C, and Fortran.
The goal of an object-oriented approach is that much of the code can be re-
used. In our case, the objects comprise methods for carrying out tasks, and
insofar as they are related, they are grouped into classes. But a by-product
of this concept, which emerges from an examination of the spectral-element
method (SEM) [31], is that the primary objects are operators which are used
in the solution of the equations (cf. Chapter 8). While we use these operators

1

for solving the Navier-Stokes and advection-diffusion equations in this Guide,
they may be re-used to solve entirely different classes of problems, with only
modest additional work.

This guide will help the user to run the GASpAR code. The focus will be
on the solution of the time-dependent advection-diffusion and Navier-Stokes
equations. The document will also attempt to help the user become familiar
with the code architecture sufficiently to make modifications to the existing
code, or even to determine how the code might be altered to accommodate
different physics, if desired.

We will assume that the reader is at least not repulsed by the sight of C and
C++, and that he/she knows about makefiles and basic Unix commands.
Most of the presentation on serial processing will, if details are required,
center on the Linux operating system, and for parallel processing, will refer
mainly distributed memory cluster-type systems. So, some basic knowledge
of these systems may be helpful.

Throughout this Guide, we adopt the conventions that text entered on the
command line will appear as bold typewriter text; file names will appear in
quotes, and stand-alone executables or packages will appear in italics; and
function/method/class and parameter names will appear in boldface.

The first chapter will enable the user to run GASpAR quickly on canned test
problems, and will provide a description of operational basics. The user will
also be guided quickly through the procedure for setting up a new problem
in Chapter 3. Subsequent chapters will look in more detail at I/O (Chapter
6), and utility classes and functions used in earlier chapters (Chapter 7). In
Chapter 5 we present some of the most important MATLAB ingestion and
analysis tools that are supplied with the distribution. Finally, in Chapter
8 we offer an in-depth look at the our adaptive spectral element method as
applied to advection-diffusion problems, and offer some observations about
the application of the method to studies of turbulent flows.

If you have any questions, comments or concerns, please feel free to contact
us using the contact information provided in Appendix D. While we cannot
at this time offer formal support to users, we would appreciate any feedback.

2

Chapter 2

Operational basics

This chapter looks at basic code operation, and, in general, is intended to
enable the user to run a problem as quickly as possible. It should be recog-
nized that while some of the discussion deals with interactive use of the code,
not all operating systems will easily allow this type of operation. This chap-
ter will not necessarily distinguish between interactive and non-interactive
(batch) operation; however, all the examples will work on a system that
allows interactive jobs.

2.1 A look at the source tree

We assume that you have downloaded the GASpAR code tarball, gaspar.tar.
You should simply expand the tarball, and enter the directory, “gaspar” that
is created:

> tar xvf gaspar.tar
> cd gaspar

You will notice several new subdirectories are also created. These are the
“src”, “bin”, “doc”, and “test” subdirectories. The basic contents of the
“src” directory is described in Table 2.1.

3

Table 2.1: Description of source code subdirectories
blas : basic linear algebra routines and interfaces to GASpAR objects
comm : all inter-processor communication code and data
exec : upper-level executive, output, and restart files
include : basic data types, and misc other global definitions
io : all I/O classes
matlab : all MATLAB ingestion and analysis scripts
mesh : mesh generator code and makefiles
sem : SEM operators and basis classes
solvers : linear solvers, and preconditioners
utils : generic, and GASpAR-related utility namespaces, utility classes

The “bin” directory contains the stand-alone utilities described in Chapter
4. To make these utilities, simply enter the bin directory, and type

> make all

The “doc” subdirectory contains this Guide, as well as comprehensive doc-
umentation on all the sources in the distribution. One may simply point a
browser a the “doc/html/index.html” file to find the method interfaces for
all the classes, namespaces and functions in the source tree.

Finally, the “test” directory contains the test source codes and scripts and is
the directory from which we will begin running problems.

2.2 Running test problems: A quick start

We are interested in the “test” subdirectory:

> cd test
> ls

There is a makefile in this directory (“makefile”) that can be modified for
the local system. In §3.8 we discuss the systems on which the code has been

4

tested. The preprocessor definitions that may be set in the makefile are
provided in Appendix B. For now, these should not be changed.

Once the makefile has been modified to give the proper paths for the MPI
libs (if desired) and the compilers, build and run the code:

> make
> ./gauss test.csh

The script “gauss test.csh” runs the Gaussian sphere test discussed in §8.2.2.
This test uses the advection-diffusion solver. The script creates a directory
“gauss test” which contains subdirectories of each run, labeled “gauss test nrX nY”,
where X is the number of grid refinement levels, and Y = P + 1, where
P is the polynomial expansion order. Before each run, the data file “gas-
par gauss.dat” is copied to the run subdirectory. This file contains the pa-
rameter data, and is read before execution.

The shell script shows that the line starting the code execution contains
command line parameters as well. In all cases, the command line parameters
override those parameters set in the parameter file (see Sec.7.2). The output
resides in binary files prefixed with the subdirectory name, and suffixed with
the time indices, and a log file is created that is prefixed with “log.”, for each
run. The log file contains system-wide (“static”) data and time-dependent
(“dynamic”) data. The system specifies which parameters are placed in the
log file, but the user can add to it any additional static or dynamic data
desired (cf.§3.5). In this problem, the final column in the log file gives the
error of the computed solution with respect to the analytic solution. We will
consider how to view the binary file output in §2.6, and in Chapter 5.

In addition, for convenience, there is a user-defined log file called “gauss.conv”
that gives the expansion order vs. the final error for all the runs that are
computed by the script. The user may plot the two columns in this file to
arrive at a plot similar to that in Fig. 8.3(b). The dynamic log file data can
be compared with that in Figs. 8.4(c-d).

There are a number of other advection-diffusion problems that can be run
as well. Each problem is set up in a file called a user file, and is named with
a prefix “guser ”. These are located in the “gaspar/src/user” directory. For

5

example, if we want to run the N-wave example discussed in §8.2.3, we do
the following:

> cd ../src/user
> cp guser nwave test.cpp guser.cpp
> cp guser nwave test.h guser.h
> cd ../../test
> make clean
> make

For this problem, there is also a script, “nwave test.csh”, that can be run to
reproduce some of the results discussed in §8.2.3, particularly Fig. 8.6. As
with all the scripts, the variable “HOME” in this script tells where the output
from this run can be found. The output file name conventions follow those
in the above example. Also, a user-defined log file, “nwave.conv”, provides
convergence data in a form convenient for comparing with results in Fig. 8.6.

The final advection-diffusion test setup is in “guser heat test.cpp”, and this
can be run in the same way as the above test problems; output can be
compared with that in Fig. 8.3(a) and Figs. 8.4(a-b).

The user file “guser kovaszny.cpp” runs a test of the Navier-Stokes solver.
To run this test, you must first modify the “build/makefile” by commenting
out the “SOLVER=BURGERS” line and replacing it with “SOLVER=NS”.
Then type

> cd ../src/user
> cp guser kovasznay.cpp guser.cpp
> cp guser kovasznay.h guser.h
> cd ../../test
> make clean
> make

as before. There is also a script (“kov test.csh”) that will make a series of
runs at different orders in order to compute the solution and its error as a
function of expansion order. The directory “kov test” contains subdirectories
with the results from the different runs. In each of these subdirectories,

6

the log file, prefixed with the word “log” gives the run diagnostics. The
final column of the log files gives the solution error as a function of time.
The polynomial expansion order is gotten from the run subdirectory name
as above. For example, “kov test nX” means that the expansion order is
P = X − 1. A plot of the error vs. polynomial expansion order should look
like Fig. (2.1). The data for making this plot is provided in the user-defined
log file “kov.conv” for convenience.

The straight line indicates spectral convergence, one of the nice properties of
the spectral element method. [Note that for P > 12, the error norm in this
plot is limited by the iterative solver’s error tolerance, which was set low.]

This problem is a steady-state test, that is nevertheless achieved by using the
time marching algorithms. The user is free to modify the NR parameter in
the “kov test.csh” script in order to investigate the effects of different levels
of refinement on convergence. Be warned that the fixed timestep (set on the
command line invocation of the executable within the script, with a -dt) may
have to be reduced for large NR.

We have encapsulated much of operation discussed in this section within
scripts, and set up the directories in order to facilitate getting the user up and
running on some canned problems. But note that there is nothing magical
about these scripts or the directory structure. The user is free place the
sources, binaries, scripts and data in whatever locations relative to each
other that she feels comfortable with.

2.3 How to use the command line and the

parameter file

The shell scripts in the test problems indicate that a number of parameters
are altered on the command line from those specified in the parameter file,
“gaspar*.dat”. For example, the options

> ./gaspar -if gaspar gauss.dat -m data/cone mesh 4x4 n5 p.dat
-nr 3 -of tst -lf log.tst -c 0.2 -time 0.2

7

Figure 2.1: Plot of L2 error norm vs. expansion order in Kovasznay flow
problem

8

tell GASpAR to read parameter data from the file “gaspar gauss.dat”; use
the mesh file data/cone mesh 4x4 n5 p.dat for creating the grid; to allow
a maximum of 3 refinement levels (-nr 3); to place the output in files prefixed
with the name “tst” (-of tst); to place log information in the file log.tst (-lf
log.tst); to set the Courant number for a variable timestep (-c 0.2); and to
integrate to a time of 0.2 (-time 0.2).

Most of the parameters specified in this file can be changed on the command
line. By typing

> ./gaspar -h

one can view the list of parameters that may be entered on the command line.
Command line parameters always override parameter file settings. There is
no ordering required for specifying command line parameters. If a parameter
is repeated on the command line, the final specification is the one that takes
effect. Some command line parameters have no parameter file equivalent.
At least one command line option (-if paramfile) can have no parameter
file equivalent (this changes the parameter filename). The complete list of
command line options is provided here; it is largely self-explanatory. This
list is just the screen output from issuing the ./gasp -h directive.

Enter:

./gaspar [{-Nx}{-Ny} #Elems] [{-xNx}{-xNy} Exp_Order] [-P0 x0 {y0}] [-P1 x1 {y1}] [-(no)u1(2)pc]

[-(no)ppc] [-upctype Type] [-stokestype Type] [-spectralap YN] [-deriv1ap YN] [deriv2ap YN]

[-aptol[1][2] Tol] [-apmult[1][2] Mult] [-p(u)iter #Iter] [-p(u)tol Tol]

[-bdy Face# Type] [-c Courant#] [-dt TimeStep] [-dd Text] [-nu val] [-nu1 val] [-nu2 val]

[-rho val] [-time MaxTime] [-cycles MaxCycles] [-r] [-rg] [pgrid] [-rc YN] [-noadvect] [-linadvect]

[-bal Y/N] [-filter Y/N] [-filter_strength alpha] [-filter_delta d] [-no_outongridchg]

[-ocb OutCyc_Beg] [-oce OutCyc_End] [-ocd OutCyc_Skp] [-otb OutTim_Beg] [-ote OutTim_End]

[-otd OutTim_Skp] [-acd AMRCyc_Skp] [-atb AMRCyc_Beg] [-atd AMRTim_Skp] [-atb AMRTim_Beg]

[-lcd LogCyc_Skp] [-dcd DmpCyc_Skp] [-nfit NspFit] [-sigtol Tol] [-if Cmd_File]

[-of Out_File] [-lf Log_File] [-uf User_File] [-rf Rst_File] [-df Dmp_File]

[-m Mesh_File] [-ub BlkName] [-noadapt] [-dealias Y/N] [-nr nLevels] [-h]

Where:

-Nx #Elems : Number of elements in x-direction. Default is 1.

-Ny #Elems : Number of elements in y-direction. Defaulst is 1.

-xNx Exp. Order : Expansion order in x-direction. Default is 4.

-xNy Exp. Order : Expansion order in y-direction. Default is 4.

-P0 x0 {y0} : Bottom left corner. There must be dim of these. Default is (0,0,0).

-P1 x0 {y0} : Top right diagonal corner. There must be dim of these. Default is (1, 1,1).

-(no)upc : Use (don’t use) preconditioner for u1 and u2.

9

-(no)ppc : Use (don’t use) preconditioner for p.

-upctype Type : Use preconditioner type Type for u1 and u2. Type may be:

0: GPC_BLOCKJAC_HELM

2: GPC_POINTJAC_HELM

3: GPC_NONE

Default is GPC_NONE.

-stokestype Type: Use Stokes solver type Type. Type may be:

0: STOKES_SCHUR_DELP--Perot decomp. with pressure correction

1: STOKES_UZAWA --Uzawa splitting

-spectralap YN : Use spectral a-posteriori error criterion (1); else don’t (0). Default is 1.

-deriv1ap YN : Use 1-derivative a-posteriori error criterion (1); else don’t (0). Default is 1.

-deriv2ap YN : Use 2-derivative a-posteriori error criterion (1); else don’t (0). Default is 1.

-aptol Tol : Set spectral error refinement tolerance.

-apmult Mult : Set spectral coarsening scaling factor.

-aptol1 Tol : Set 1-derivative refinemtn tolerance.

-apmult1 Mult : Set 1-derivative coarsening scaling factor.

-aptol2 Tol : Set 2-derivative refinemtn tolerance.

-apmult2 Mult : Set 2-derivative coarsening scaling factor.

-p(u)iter Iter : Max no. iterations for pressure (velocity) solve.

-p(u)tol Tol : Error tolerance for pressure (velocity) solve.

-bdy Seg Type : Set boundary condition Type on face (edge, point) given by Seg.

Seg is given in 1d by X0; in 2d by segment endpoints X0 Y0 X1 Y1.

Type is one of: 0 (Dirichlet),

1 (Neumann), 2 (Periodic), 3 (No-slip), 4 (None). Default is 4.

-c Courant# : Set Courant number to Courant.

-dt TimeStep : Set time step to TimeStep. Courant number not used.

-bscaled_dt y/n : If fixed time step, scale it due to refinement or not (0 or 1). Default is 1.

-dd Text : Pass Text to grid partitioner

-ab N : Set Adams-Bashforth order for adv. term (1, 2, 3, or 4)

-ext N : Set extrapolation order for adv. term (1, 2, or 3)

-bdf N : Set BDF order for derivative (1, 2, 3, or 4)

-et N : Set time stepping method: 0=> OIFS; 1=>ABBDF; 2=>EXBDF.

-nu val : Set kinematic viscosity to val.

-nu1 val : Set 1- kinematic viscosity to val.

-nu2 val : Set 2- kinematic viscosity to val.

-rho val : Set density to val.

-time val : Set max evolution time to val.

-cycles val : Set max evolution cycles to val.

-r : Do a restart with no regridding (default restart file is ’gaspar.dmp’).

-rg : Do a restart with a regrid (default restart file is ’gaspar.dmp’).

-pgrid : Construct a PERIODIC [0,1]^2 grid with Nx x Ny elements, each

of expansion order (xNx x xNy).

-rc : Read command file on startup? (0, 1; default is 1).

-noadvect : Do not perform advection.

-no_outongridchg: Do not do SDS output when grid changes.

-linadvect : Do linear advection with specified advection velocity.

-bal Y/N : Do load balancing (1/0). Default=0.

-filter Y/N : Use filtering? (1/0). Default=0.

-filter_strength alpha

: Set filter strength = alpha. Default=0.0.

-filter_delta d : Set filter smoothing delta = d.Default=1.

-ocb OutCyc_Beg : Output cycle-begin.

-oce OutCyc_End : Output cycle-end.

-ocd OutCyc_Skp : Output cycle-delta.

-otb OutTim_Beg : Output begin time.

-ote OutTim_End : Output endtime.

-otd OutTim_Skp : Output time-delta.

10

-acd AMRCyc_Skp : AMR cycle-delta.

-acb AMRCyc_Beg : AMR cycle-begin.

-ace AMRCyc_End : AMR cycle-end.

-atd AMRTim_Skp : AMR time-delta.

-atb AMRTim_Beg : AMR time-begin.

-ate AMRTim_End : AMR time-end.

-bcd LBalCyc_Skp: Load balance cycle-delta.

-bcb LBalCyc_Beg: Load balance cycle-begin.

-bce LBalCyc_End: Load balance cycle-end.

-btd LBalTim_Skp: Load balance time-delta.

-btb LBalTim_Beg: Load balance time-begin.

-bte LBalTim_End: Load balance time-end.

-lcd LogCyc_Skp : Logging cycle-delta.

-dcd DmpCyc_Skp : Dump cycle-delta.

-nfit nSpFit : Number of coefficients to use in spectral fit.

-sigtol Tol : Spectral decay rate tolerance.

-if Cmd_File : Get system options from Cmd_File, instead of from gaspar.dat (default).

-of Outut_File : Place output in Output_File. Default is results.######.

-lf Log_File : Log to file Log_File. Default is gaspar.log.

-uf User_File : Get user data from User_File. Default is gaspar.user.

-rf Restart_File: Use ’Restart_File’ as restart file. Default is gaspar.dmp.

-df Dump_File : Change default dump file name from ’gaspar.dmp’ to Dump_File.

-m Mesh_File : Use ’Mesh_File’ to generate the mesh.

-ub BlkName : Use BlkName as parameter block in the command file, instead of UserBlk (default).

-noadapt : Turn off grid adaption.

-dealias : Set Dealias flag (0,1). Default is 0.

-nr nLevels : Maximum number of refinement levels. Default is 0 (no adaption).

-h : Print this help text.

If the parameter file is not found, then all tunable parameters revert to their
defaults, and a message is displayed. The default values of the tunables are
contained in the “src/exec/gaspar t.h” file. The lack of a parameter file is
not considered an error. It is inadvisable to use any of the grid-altering
command line parameters (e.g. , -Nx(y),-xNx(y), -P0(1), or -bdy), since
the ability to generate “on-the-fly” grids will be removed entirely soon.

If you look at the parameter file, you’ll notice several things. First, there
are two sections (parameter blocks) within it. [Note: a parameter file with a
full list of allowed parameters is included in Appendix A.] The first is called
GASpAR MAIN, and the second, GASpAR AUX. Both sections are
read on initialization, but only GASpAR MAIN is read if the restart flag
(or command line equivalent) is set. If either one of these parameter blocks is
missing on initialization, or if the GASpAR MAIN group is missing upon
restart, then an error is issued, and the code halts.

Also, note the structure of a parameter file block:

11

GASpAR_MAIN

{

//___

// General time and output control

//___

Do_Restart : 0; //0->no restart; 1->restart

Restart_Using_File_Name : gaspar.dmp; // Used if Do_Restart = 1

Output_Time_Specification : 0; // 0->Time-based; 1->Cycle-based

Output_Time_Begin : 0.0; // Begin output at this time

Output_Time_End : 20.0 ; // End output at this time (also run termination time)

Output_Time_Delta : 0.1 ; // Output at this time interval

Output_Cycle_Begin : 0; // Begin output at this cycle number

//__

//__

...

}

The parameter block must have a name (GASpAR MAIN here), be brack-
eted by the pair {}, and for each keyword, the format must be

keyword: value;

Neither the spaces nor, strictly speaking, the carriage returns are important.
Also, any text starting with “//” is ignored; these indicate that a comment
follows, and may be placed anywhere in the file. These rules are general
for any parameter file read by GASpAR. For example, a user may want to
initialize a problem using a parameter file (this is discussed more in section
7.2). If so, then the same rules apply. The parameters in the default (“gas-
par.dat”) parameter file is the full list of parameters that may be modified.
However, the file need not contain all of the parameters; those that are not
found in the file will revert to the defaults specified in the “gaspar t.h” file.

2.4 Mesh Generation

In the test problems above, a mesh file was specified for each run, by using
the -m option on the command line. At one time, GASpAR was set up to
produce grids itself if none was specified. However, this capability will soon
be deprecated, and the code will require a mesh file in order to generate a
grid.

12

The mesh reader used by GASpAR requires that the mesh file conform to
a certain format (described in section 7.3), but there is no prescription for
creating a mesh, so that one may be provided from any source, so long as it
has a format that the MeshReader object can handle. In fact, the mesh
files in the Kovasznay test were created using the mesh-generation utility
gdd, and then modified to produce the unregularized meshes that are used.
More on the gdd utility can be found in Chapter 4.

2.5 Restarts

GASpAR has the ability to restart a problem and continue time-marching.
A special binary dump (“.dmp”) file is created at specified intervals during
a run, which contains all of the information required to restart the run from
the point where it left off. In reality, any ordinary output file can serve the
purpose of the dump file, however, information, such as the time level history
of the state, is not currently included in the output files. So there will be
some start-up error on restart if an ordinary output file is used.

The dump file name, and dump cycle interval are set in the parameter file, or
on the command line. The default dump file name is “gaspar.dmp”, and it is
(re)-created every 100 cycles, by default. Currently, an existing dump file is
moved to a new file, tagged by a “%”, and the new dump file created. Thus,
at any time, there will be two dump files separated in time by the dump cycle
interval. The dump file name can be changed in the parameter file (using
the Default Dump File Name parameter) or on the command line (with
the -df option); the dump interval is governed by the Dump Cycle Delta
parameter and the -dcd command line option.

2.6 Output preliminaries

This section discusses, briefly, how output is managed, and what formats
GASpAR supports. Details of the output objects can be found in Chapter
6. By “output”, it is meant the placing of the current time-stamped state,
in some form, into a file. Currently, this is distinguished from the process of

13

“dumping” data from which the code can be restarted, and time marching
continued (see section 2.5). The output file name is set in the parameter file
(“gaspar.dat”) using the quantity Output File Prefix or on the command
line with the -of option. By default, the output routine will append a cycle
index to this string in order to time-tag it. The file contains all physical
quantities (velocity components, pressure), their grids, and time (physical
and cycle number) information. Additional information (e.g., an analytic
solution) may be included easily (see §3.2).

The frequency of the outputs is governed by the Output Time Specification
parameter in the parameter file. If this parameter is 0, then the Out-
put Time Begin, Output Time End, and Output Time Delta param-
eters in the file are read, and output occurs starting at Output Time Begin,
ending at (or close to) Output Time End, with an interval of Output Time Delta.
This interval may not be exact; it will depend on the timestep, which, in
general is changing at each cycle, unless the Use Fixed Timestep param-
eter is set to 1, or the -dt command line parameter is set. If the Out-
put Time Specification is 1, then output will occur by cycle number,
starting at Output Cycle Begin, ending at Output Cycle End, with an
interval of Output Cycle Delta. On the command line, the time specifica-
tion is determined by which set of commands is given (-otb, -ote, -otd for
time-determined, or -ocb, -oce, and -ocd for cycle-determined). It is best
not to mix these sets of command line options.

GASpAR supports, ostensibly, two different binary output formats. One is
based on the Hierarchical Data Format-5 (HDF5; see URL http:://hdf.ncsa.uiuc.edu).
This format has not been fully tested, so it has not been fully integrated into
the code. The second format is the GASpAR-binary, or GBin, format. GBin
is a fully self-describing platform-independent binary format, whose data is
specified by offsets within the file. It, like the HDF5 package, allows for
parallel output using MPI-IO, and will revert to POSIX calls if MPI-IO
is unavailable. The construction API for GBin is similar to that for the
HDF5 package, so that the object instantiation is the same. GBin retains
an HDF3-like API for setting data dimensions, grids, tags and metadata,
and can accommodate all data types used in GASpAR, with no repetition of
data. GBin files (including the dump files) can be profiled with the utility,
ginfo (see Chapter 4).

14

Currently, only the GBin format is selectable, but the HDF format will be
available soon. Restart (dump) files will continue to use the GBin format,
however.

At present, a full printed explanation of the GBin file format is not available.
However, one will be published in a future document. In the meantime, you
can go directly to the sources (“src/io/gbin writer.cpp” or “src/io/gbin reader.cpp”)
if you want to see the details.

Output may be examined using a variety of MATLAB scripts that have been
provided with the distribution. The script “src/matlab/gbin input.m”, with
its components “src/matlab/gbin fileinfo” and “src/matlab/gbin dsread”, in
addition to being required to ingest GBin data may also be useful for eliciting
the file format. The script “src/matlab/meshelem.m” is arguably the most
useful analysis script in that it will perform visualization of GBin datasets.
These and other important MATLAB scripts are described in Chapter 5.

15

Chapter 3

Setting up your own problem

We have attempted to make problem setup as painless as possible. In this
chapter we provide in some detail some of the procedures used in setting
up and running a problem from scratch. The code is designed so that all
problem set-up, and in fact, all user-defined quantities, reside in a single file,
called a user file. In Sec. §2.2 we saw that this file is, by default, called,
“guser.cpp”, with a header called “guser.h”. The user file header contains
all of the data that the user wants to globalize, and make available to other
parts of the code. It is also a good place to pre-define user-defined functions
that may also reside in the user file.

A user file must contain several functions (methods) that are recognized by
the system. Comprising this section is a list of theses methods. Perhaps the
best way to familiarize yourself with these is to look at them in the context of
the examples described in Sec. 2.2. In the following subsections, we provide
detail on each of the required functions, and what they can do for you.

3.1 GUserConfig

The GUserConfig method in “guser.cpp” is the method where system con-
figuration parameters are set. The method is called in the GInit method
after the parameter file and command line parameters have been parsed. It

16

is intended to be the place where variables representing the initialization of
system-wide memory or solver characteristics can be set. For example, if the
advection-diffusion solver is being used, one might set

bLinAdvection_ = TRUE;

nEvolvedFields_ = 1;

in order to indicate that linear advection is to be done, and that the number
of fields that the user file will initialize, and that GASpAR will evolve, is 1.

3.2 GUserInit

This method is where the problem is initialized. This is called after all vari-
ables and the solver(s) are created. This method is not called if the problem
is a restart (-r or -rf command line option specified, or Do Restart file
parameter is set to 1. In this method, the problem time initialization should
be specified. This includes adaption at t = 0, if required. In Chapter 2,
we described a number of user files that show a variety of types of initial-
ization. Many of the methods that are provided in these files are not the
most efficient way to perform the initialization. This was done not only for
expediency, but also to present the variety of access methods that are al-
lowed. For efficiency, however, intialization or restart should adhere to good
vectorization methods; the access methods exist to insure this.

Also, user-defined parameters or variables may be defined here. By “user-
defined” it is meant that the system will manage these variables. That is, the
system will output them together with the system quantities, and if adaption
is done, the system will take care of interpolating these quantities to their
new grids. Note that if user-defined parameters/variables are defined in this
method, then, in general, they won’t be defined upon restart. So, the user
is encouraged to put definitions of new variables in a user-defined method
(function). The name of the function must appear in the “guser.h” header
file, and all user-defined variables must be globalized by placing them also in
this same header file. An example is of this technique is provided presently.

In order to specify user-defined variables, we use a call(s) to the method

17

GRegisterUserFields. For example, we declare the fields for vorticity and
energy in “guser.h” together with some other data:

#if defined(GASPAR H INIT)
GBOOL bSkipTime;
GINT iSkipCycle;
GDOUBLE kx;
GDOUBLE ky;
GDOUBLE sigma;
GDOUBLE KE;
GDOUBLE Enstrophy;
GFieldList vorticity;
GFieldList energy;
#else
extern GBOOL bSkipTime;
extern GINT iSkipCycle;
extern GDOUBLE kx;
extern GDOUBLE ky;
extern GDOUBLE sigma;
extern GDOUBLE KE;
extern GDOUBLE Enstrophy;
extern GFieldList vorticity;
extern GFieldList energy;
#endif
void MyInit();

Then in the function MyInit we make the following call:

if (GRegisterUserFields(2, &vorticity, ”Zeta”, &energy, ”KE”)
== 0)
cout << ”MyInit: user field registration failed” ¡¡ endl;
exit(1);

The user may choose to make a single call to GRegisterUserFields with
all the user-defined variables to register, or he can split the registration up

18

over several calls to the function. Each variable registered must contain a
pointer to the variable (e.g. “&vorticity”) and a user-provided name (e.g. ,
“Zeta”), in that order. In this example, then, the function MyInit would
be called from both GUserInit and GUserStart so that the user-defined
variables are available both at initialization and restart.

The user is encouraged not to modify the

#if defined(GASPAR H INIT)
#else
#endif

preprocessor definition in the “guser.h” file. This construct is used in the
main driver so that data is not multiply defined.

3.3 GUserStart

If the run is a restart, then GUserInit is not called, but GUserStart is.
For example, if there are time-dependent boundary conditions that must be
computed, then these can be computed initially with a call to a function
from withing GUserStart, and can be computed subsequently with a call
to this same function from within GUserTimeDep.

3.4 GUserTimeDep

This method is intended to compute anything the user wants to compute at
each timestep. It is called after grid adaption (if any), and before a solver
step; hence, before the time is updated. As mentioned above, time-dependent
boundary conditions may be computed in this function, but also, any user-
defined time dependent quantity can also be computed here (e.g. , vorticity,
point-wise kinetic energy). User-defined quantities that do not need to be
recomputed at every timestep should not be placed in this method.

Since this method is called at each timestep, it is important to code it as

19

efficiently as possible. We have not done this in the above examples in all
cases, mainly to illustrate the variety of access methods available. In general,
this method should use the rules for vectorization as often as possible.

3.5 GUserLogConfig

GUserLogConfig provides the user with a place to configure static and
dynamic components of the log file. The log file is intended to contain run
parameters (static) and time-varying diagnostics (dynamic), a sort of quick-
check of the run’s progress. The log file is updated at a user-specified interval
(command line parameter -dcd or file parameter Logging Cycle Delta).
Any user-defined parameters that are to be added to the log file must be
globalized by placing them in the “guser.h” file. The logging is handled by the
class GLogger. Static and dynamic parameters are configured separately:

// Set static log data (doesn’t change with time cycle)

bOk = glogger_.SetStaticParamDesc("%f %f %f %b %i", "kx"

, "ky"

, "sigma"

, "NewbSkipTime"

, "NewiSkipCycle");

bOk = bOk &

glogger_.SetStaticData(5 , &kx, &ky , &sigma

, &bSkipTime, &iSkipCycle);

);

GBOOL bOk;

// Set dynamic log data (changes with time):

bOk = glogger_.SetDynamicParamDesc("%f %f"

, "KE"

, "Enstrophy"

);

bOk = bOk &

glogger_.SetDynamicData(3 , &KE, &Enstrophy

);

20

Here, we assume that the user-defined variables are defined in the “guser.h”
file, as in §3.2.

The parameter description setups have the same format: specify a format
for the parameter, and then provide a text description of the variable. The
specification of the data (variables) are also the same: indicate how many
variables you’re setting, and then give the pointers to each of them. In the
call to the method SetStatic(Dynamic)Data, the variables must agree in
type and number to those given in the SetStatic(Dynamic)ParamDesc
call. It is because the SetStatic(Dynamic)Data methods take pointers to
the variables that are used in the system that the variables must be globalized
by setting them in the “guser.h” file. The user can set as many or as few
parameters as desired in the file, and can split them over several calls to the
Set methods. The order in which they appear in the log file, however, is the
order in which they are set.

In this example, the static data section of the log file contains, in addi-
tion to the data set by the system, the user-defined quantities labeled ”kx”,
”ky”, ”sigma”, ”NewbSkipTime”, and ”NewiSkipCycle”. The system dy-
namic parameters will be augmented by the user-defined quantities ”KE”
and ”Enstrophy” in that order. All time-dependent user-defined variables
can be updated in the call to GUserLogUpdate. This is distinguished
from GUserTimeDep simply because the user is free to specify the log
cycle interval, so logging may not be done at every time cycle.

The allowed format specifiers are b, i, d, l, f , and s, representing, respectively,
the system-defined data types, GBOOL, GINT, GINT, GLONG, GDOU-
BLE, and char *. There is currently no format specifier for GFLOAT, so all
user-defined floats are expected to to be of type GDOUBLE.

The list of static and dynamic system parameters that are provided in the log
file is given in the method GInitLogger, in the file “src/exec/gaspar t.cpp”.

21

3.6 GUserLogUpdate

This method is intended to be a place where the user can compute the user-
defined variables that have been set to appear in the log file. It is called
at the end of a timestep, after any data is output, and before the method
that creates a restart file. It is only called at a user-defined cycle interval
(see §3.5). All quantities computed in GUserLogUpdate must have been
globalized by placing them in the “guser.h” file.

3.7 GUserTerm

The GUserTerm simply provides a place where the user may perform some
activity after time stepping is complete. For example, the user might wish
to compute a terminal variable, such as cpu time, and write this to a user-
defined log file.

3.8 Systems that have been tested

In the following table 3.1 we present a list of characteristics of some of the
systems that GASpAR has been run on. This is not a complete list, as
various component tests have been done on a variety of other systems. The
idea is to make the code as portable as possible. If you run the code on a
system that is not described here, we would appreciate it if you would let us
know, so that we can update this list. [Note that PGI refers to the Portland
Group compiler suite.]

22

Table 3.1: List of some of the systems that GASpAR has been tested on

Description OS Compiler(s)
Linux single-cpu, x 86 Fedora Core 1 gcc2.9.6

PGI 5.2
Linux multi-cpu, x 86 Fedora Core 3 PGI 5.2

PGI 6
IBM SP AIX Visual Age 6.0
Linux SMP, EMT64 Linux PGI 5.2

PGI 6

23

Chapter 4

Command line utilities

There are a couple of off-line utilities that have been provided to produce
grids and inspect output data. These utilities are provided in the distribution
under the

./bin

subdirectory. To make these utilities, simply enter the bin directory, and
type

> make all

Each of these utilities is described, in turn, here.

4.1 Grid generation with gdd

This utility was introduced in section 2.4. This mesh generator is a basic rect-
angular mesh generation utility that creates conforming meshes from a spec-
ified global rectangular domain, and labels nodal points if directed to do so.
Boundary indices are also provided; these index the labeled nodes. Boundary

24

condition types may be specified node-by-node using gdd. There are two for-
mats into which the generator will put the mesh data: one sorts the element
data (including nodes and boundary data) for each processor; the other sorts
the data by element id. Currently, the elements are assigned to processors by
an even distribution method, but hooks have been placed in the code to ac-
cess a standard interface routine, so that other packages, such as Chaco (see
http://www.cs.sandia.gov/%7Eweb9200/9200 download.html), can be used
by gdd as dynamic libraries to carry out the element distribution among
processors. This work is on-going.

The gdd utility is designed primarily as an interactive stand-alone program for
generating grids, which can then be used by GASpAR with the -m command
line option. The options that gdd understands are given by the following,
which is the output obtained by issuing the command

> gdd -h

Enter:

../gdd [-d dim] [{-Nx}{-Ny}{-Nz} #Elems] [{-xNx}{-xNy}{-xNz} Exp. Order]

[-P0 x0 {y0} {z0}] [-P1 x1 {y1} {z1}] [-b Face# Type] [-Np #Procs]

[-o Output_format] [-l filename] [-f filename] [-quiet] [-h]

Where:

-d dim : problem dimensionality (1, 2, or 3). Default is 2.

-Nx #Elems : Number of elements in x-direction. Default is 1.

-Ny #Elems : Number of elements in y-direction. Default is 1.

-Nz #Elems : Number of elements in z-direction. Default is 1.

-xNx Exp. Order : Expansion order in x-direction. Default is 4.

-xNy Exp. Order : Expansion order in y-direction. Default is 4.

-xNz Exp. Order : Expansion order in z-direction. Default is 4.

-P0 x0 {y0 {z0}}: Bottom left corner. There must be dim of these. Default is (0,0,0).

-P1 x0 {y0 {z0}}: Top right diagonal corner. There must be dim of these. Default is (1,1,1)

-b Seg Type : Set boundary condition Type on face (edge, point) given by Seg.

Seg is given in 1d by X0; in 2d by segment endpoints X0 Y0 X1 Y1;

in 3d by diag corners X0 Y0 Z0 X1 Y1 Z1. Type is one of: 0 (Dirichlet),

1 (Neumann), 2 (Periodic), 3 (No-slip), 4 (None). Default is 4.

-Np #Procs : Number of processors. Default is 1.

-cb N Type : Set common bdy node, N, to type, where Type is one of: 0 (Dirichlet),

1 (Nuemann), 2 (Periodic), 3 (No-slip), 4 (None). No default.

Corners, N, are s.t. 0=>bottom left; 1=>bottom right; 2=>top right; 3=>top left in 2d.

-o Output form.: Output format: By_Proc==>sort by proc id; By_Elem==>sort by element id.

Default is By_Proc.

-l filename : Partition library file name. Default is NULL.

-f filename : Output file name. Default is mesh.dat.

-quiet : run without echoing parameters. Default is full echo.

-(no)nodes : (do not) print nodal information to file. Default is -nodes.

25

-h : Print this help list.

Currently, only rectangular domains are supported. In the

future, a GUI will be added to decompose grids and provide

mesh information for general domains.

Output data is placed in the ’filename’ file, or in ’mesh.dat’

if no filename is provided. All data for constructing the finite

element-based mesh on a multi-processor system is supplied. By default,

a simple cyclic distribution of the elements among the processors is

performed. If a shared library (SO) is specified, then the processor

distribution is performed by that library. The SO must contain the

entry point ’GDDInterface’, whose format is given in gdd.h

4.2 Data profiling with ginfo

The profiling utility, ginfo, simply provides at-a-glance information on a GBin
file. Summary information only is provided. This includes the metadata,
number of datasets, and for each dataset, the label, rank, dimensions, tag
data, basic geometry information, if provided, and data max/min. The call
is simply

> ginfo file1 file2 file3 ...

The following is a sample output from ginfo acting on a dump file:

File summary for ’gaspar.dmp’:

File descriptor : \gaspar_DUMP_FILE

Endian swapped? : 0

Number of datasets : 3

Meta Data: (0): 4400

(1): 13

(2): 0

(3): 13

(4): 100

(5): 0

(6): 0

(7): 100

(8): 10

(9): 1e-09

(10): 4.4e-06

(11): 1e-05

(12): 0

26

(13): 1e-05

(14): 5

(15): 0

(16): 0

(17): 0

(18): 1

(19): 1

(20): 2

(21): 0

(22): 0.025

(23): 0.025

(24): 1

(25): 0

(26): 0

(27): 0

(28): 0

.......................................Dataset: 0:

Label : V1

Rank : 2

Dims : (13, 13)

Tags : (0): 4.4e-06

(1): 4400

No. Verts : 4

Elem_Type : 1

Elem_Vert : (-0.5, -0.5) (0, -0.5) (0, 0) (-0.5, 0)

Coord dims : (169,169)

Data (Max,Min): (2.6191, -0.6191)

.......................................Dataset: 1:

Label : V2

Rank : 2

Dims : (13, 13)

Tags : (0): 4.4e-06

(1): 4400

No. Verts : 4

Elem_Type : 1

Elem_Vert : (-0.5, -0.5) (0, -0.5) (0, 0) (-0.5, 0)

Coord dims : (169,169)

Data (Max,Min): (0.248344, -1.62852e-11)

.......................................Dataset: 2:

Label : Pr

Rank : 2

Dims : (11, 11)

Tags : (0): 4.4e-06

(1): 4400

No. Verts : 4

Elem_Type : 1

Elem_Vert : (-0.5, -0.5) (0, -0.5) (0, 0) (-0.5, 0)

Coord dims : (121,121)

Data (Max,Min): (-0.0910632, -0.882867)

27

Chapter 5

Manipulating output:
MATLAB utilities

The “src/matlab” subdirectory of the distribution contains a variety of MAT-
LAB scripts for use in manipulating GBin data. Many of these are esoteric,
but may nevertheless provide some useful capability. Some of them are indis-
pensable or otherwise very useful. It is the scripts from this latter category
that we focus on in this chapter.

The goal is to present in one location a comprehensive list of these utilities
that the user may refer to. The user is always free to type

>> help <script name>

at the MATLAB command line to see the description of the utility. We do
not look in detail at which other MATLAB functions may be called from the
script interfaces.

5.1 gbin input

Usage:

28

[fileinfo elems u]=gbin_input(filename);

Description:

Given input GBin type filename, return

fileinfo (structure for file information),

elems (structure for element mesh) and

u (structure for scientific data on elems).

To view a structure, e.g., "u", type "u<Enter>".

Try "help meshelem" to view these data.

5.2 meshelem

Usage:

h = meshelem(elems,u,ifig,’lab’,lw);

Description:

Given structures elems & u (e.g., from gbin_input),

create a mesh plot in figure ifig (default 1), of variable

labeled ’u.lab’ (default ’u.V1’).

Return graphics objects handle structure h.

h.surf contains a patch-object handle, h.text is a

element-no. text-handle vector, and h.edge(1:4) are element-edge handles,

to lines of width lw (default 3).

Enter set(h.text,’Visible’,’on’) etc. to make objects visible.

5.3 plotlogf

Usage:

[h A labs]=plotlogf(’fname’,icols,jcols,’pars’,pltflag,nbackup,llist);

h =plotlogf({A labs},icols,jcols,’pars’,pltflag,nbackup,llist);

29

Description:

Read data matrix A from file ’fname’ and return handle h from

eval([’h=plot(A(:,icols),A(:,jcols)’ ’pars’ ’);’]) and cell

array labs of legend strings. In ’fname’

lines starting with ’#’ are ignored, lines starting with ’ ’,

’!*’ or a digit are read for equal numbers of numeric data columns.

Defaults:

’fname’ ’test_log.txt’

icols 2 time column

jcols 9 dU1/dx_max

’pars’ [] e.g., ’,’’r--’’’ for red dashed

pltflag true do plot

nbackup 1 backup to labels line before data

llist ’1:ndl’ line number range to read

If ’fname’ contains a ’*’ (no directory path allowed) then

loop over the wildcard-expanded file list, and automatically

assign pars for each file and each data column.

Once A & labs have been returned you can enter them to avoid rereading fname.

5.4 biopelem

Usage:

w=biopelem(u,v,op,’labu’,’labv’,’labw’);

Description:

Assign to w field ’labw’ (default ’labuoplabv’) a binary operation on

the u & v fields ’labu’ and ’labv’. The op can be a string

’plus’, ’minus’, ’times’, ’rdivide’ etc. (do "help ops" for examples)

or more generally an expression like ’x/y-1’ (do "help inline" for

30

examples). In the latter case ’labw’ must be an acceptable field name.

5.5 unopelem

Usage:

w=unopelem(elems,u,’op(x,u)’,’labu’,’labw’);

Description:

Assign to w field ’labw’ a unary operation on the u field ’labu’.

The ’op(x,u)’ can be an expression like ’sin(u)+x(:,:,1)-x(:,:,2)’.

Note ’op(x,u)’ uses ’u’ for any ’labu’,

and ’labw’ must be an acceptable field name.

5.6 manycall

Usage:

h=manycall(filepat);

h=manycall(filepat,call);

F=manycall(filepat,call,domovie);

F=manycall({fileinfo elems u},call,domovie);

Description:

Given filepat, a string with a file specification

pattern (including path and * wildcards) like ’abc*xyz’,

execute [fileinfo elems u]=gbin_input(filename); for every

filename (labeled j) that matches filepat, and execute

eval([call{1} ’elems,u,j,’ call{2}]); for each j.

If nargin<2 or call==[] use the default call={’h(j)=meshelem(’

’’’V1’’);view([40 60]),axis([0 1 0 1 b])’};

31

where b contains the ZMIN ZMAX of the 1st call.

If filepat is a structure than it is of mkfnames output type.

If the 1st argument is a cell then loop over its columns’ contents

instead of using gbin_input.

Use fig_flip(1:Nfigs,s) to cycle all figs at s seconds each.

With "F=" variant (domovie a 3rd argin), save memory by

overwriting figure j=1, but instead of h,

return an array F of movie frames from getframe

(that can be played using movie(1,F)),

and if domovie=1 print each figure to a .png file named ’fig_abc*xyz.png’

(with any subdirectory and 3-character extension info clipped)

for later conversion using e.g., the UNIX command

convert -delay 50 fig_abc*xyz.png abcxyz.mng

If domovie is a string then it names a .avi animation file and no

.png files are created.

5.7 ntrpelem

Usage:

zi=ntrpelem(elems,u,’lab’, xi, yi,’method’)

ui=ntrpelem(x,y, z,’lab’,{elemsi ic},’method’)

Description:

Interpolate from values u.lab on elems.x to zi on xi & yi, or

from values z on x & y to ui.lab on elemsi.x{ic}, using

’method’ (default ’linear’, accepts ’cubic’, ’nearest’, ’spline’).

Pass xi & yi as vectors or matrices as in INTERP2.

The default ic is 1:elemsi.n but for staggered grids ic

32

should be specified, e.g., u.V1ic, u.Pic etc.

5.8 streelem

Usage:

[h fx fy xt yt] = streelem(elems,u,ifig,ilist,sx,sy,xt,yt,stepsize,maxverts);

Description:

Given structures elems & u (e.g., from gbin_input),

create streamline plot in figure window ifig,

for elements i=ilist (default 1:elems.n),

using (and updating) tickmarks (xt,yt) (default ([],[])),

with steps of length stepsize (default .1) and

at most maxverts (default 10000) vertices per streamline.

Start vertices for element i=1:length(ilist) are (sx(:,:,i),sy(:,:,i))

(defaults to uniform element-interior grid).

Label x-y axes by l2 errors in u-v.

Return h{1:length(ilist)}, the graphics objects handles,

and (fx{:,:,i},fy{:,:,i}), the streamline finish vertices.

Example: see Kovasznay.m.

5.9 specelem

Usage:

h = specelem(elems,u,ifig,lab);

h = specelem(elems,u,ifig,lab,invis);

h = specelem(elems,u,ifig,lab,invis,lw);

Description:

33

As in meshelem, given structures elems & u (e.g., from gbin_input),

create a spectrum plot in figure ifig, of variable

labeled lab; return graphics objects handles h{1:elems.n,1:6}.

The 1st column of h contains patch-object handles, column 2 are

element-no. handles, and columns 3:6 are element-edge handles,

to lines of width lw (default 3).

If included, invis is a list (e.g., 1 or 3:6 or [1 4:5] etc.)

of h columns to be invisible.

Enter "u<Enter>" to see the labels of u.

34

Chapter 6

I/O with GBin

In this chapter we consider a more administrative aspect of the GASpAR
code in more detail. By administrative we distinguish the classes/functions
from those which perform purely numerical computation, such as those in
Chapter 8. Some administrative capabilities were introduced in Chapter
2. Here, we try to present somewhat less of an operational and more of a
design-oriented perspective of I/O in GASpAR.

The main I/O format, GBin, used in GASpAR was introduced in section 2.
Here, we expand on what was presented there. GBin actually consists of a
reader and writer, GBinWriter and GBinReader, respectively. Each of
these classes is derived from a GBin base class, called GBinStream, which
handle opening and closing of GBin files, file integrity checks, common data
offset calculations, and also provides some basic information about the file
required by both the reader and writer. This class is, in turn, derived from
a more basic I/O class, GStream, which handles the lower–level file op-
erations, for both POSIX and MPI–IO libraries. Thus GStream forms a
common interface to either serial or parallel I/O. The MPI–IO and actual
POSIX calls are contained only in the GStream class, in order to local-
ize them. If other parallel I/O message–passing libraries are required, they
should be localizable in largely the same way. If the code is compiled with
the MPI IO DEFAULT option, then MPI–IO is used; otherwise the POSIX
calls are used.

35

The basic unit of the reader and writer is the dataset. All data that is
set before writing applies to the current dataset under consideration until
they are changed. For reading, a dataset id must be supplied in order to
retrieve dataset information. In the next two subsections, we discuss the
more prominent GBin classes, the GBinWriter and the GBinReader.

6.1 GBinWriter

In this section we present the public interface methods for the GBinWriter
classes. GBinWriter accepts a variety of information required to define
the dataset, before actually writing it. Most of this associated data is not
required. If specified for any dataset, however, it remains in effect for all
future datasets, unless it is changed explicitly. A final call to WriteData
will write the dataset and its associated data to the file.

Unless otherwise indicated, the method is not required to be called.

GBinWriter(GBOOL isCollective=FALSE, GBOOL isIndependent=TRUE, GINT ioTaskID=0);

DESCRIPTION: Required. Constructor.

ARGUMENTS : isCollective : flag that tells if writer is to operate in collective mode,

meaning that all processors write collectively to the same file.

If FALSE, then the file used in the GBinWriter::Open
call must be distinct for each processor.

isIndependent: flag that tells if writer is to operate independently. If TRUE,

then host processor carries out the writes. If FALSE, then writer

will send all data to the task id specified by ioTaskID.

ioTaskID : specifies the processor id to which to send data if isIndependent=FALSE.

GBOOL Open(const char *filename, GIOS MODE iomode);

DESCRIPTION: Required. Opens file for writing. Should be the first call made.

ARGUMENTS : filename : name of file to which to write data.

iomode : open mode, one of: gios::in, gios::out, gios::inout, gios::app,

gios::binary, gios::ate (’at end’). Multiple modes can be specified

by using the ’|’ (’or’ operator), e.g. gios::binary | gios::ate to

open as a binary file with file pointer at the end of the file.

Open automatically adds the gios::binary | gios::ate flags.

RETURNS : TRUE on success; else FALSE.

void Close();

DESCRIPTION: Required. Closes GBinStream to file, and frees up all data.

36

ARGUMENTS : none.

RETURNS : none.

GBOOL SetMeta(GINT nmeta, GDOUBLE *meta˙data, const char *descriptor);

DESCRIPTION: Sets file meta data.

ARGUMENTS : nmeta : number of elements in array meta_data.

meta_data : meta data array, allocated by caller.

descriptor: meta data description string.

RETURNS : TRUE on success, else FALSE. Failure occurs if Open has not been called.

If nmeta = 0 or meta_data = NULL, TRUE is returned (not considered an error).

GBOOL SetDims(GINT rank, GINT *dims);

DESCRIPTION: Required. Sets data dimensions.

ARGUMENTS : rank : rank of dataset

dims : array of length rank, giving the size of each dimension.

RETURNS : TRUE on success; else FALSE. Failure occurs if Open has not been called,

or the rank or dimensionality is invalid.

GBOOL SetVertices(const GINT num, GDOUBLE *vertices, ELEMTYPE etype);
DESCRIPTION: Sets the vertices for the element corresponding to this dataset.

ARGUMENTS : num : number of vertices. This is checked against the rank.
There must be $ rank 2^ rank$ of these.

vertices: array of vertices from the element.

et : element type id.

RETURNS : TRUE on success; else FALSE. Failure occurs if Open has not been called, or

if the number of vertices is inconsistent with dataset rank.

GBOOL SetCoord(GINT idir, GINT dim, GDOUBLE *coord, const char *descriptor);

DESCRIPTION: Sets coordinate information, if any.

ARGUMENTS : idir : dimension referred to by call. If called multiple times with the same

value, then data will be overwritten.

dim : size of the coordinate array.

coord : coordinate values.

descriptor: coordinate description. May be NULL.

RETURNS : TRUE on success; else FALSE. Failure occurs if Open has not been called, or

if the idir is inconsistent with rank

WriteData(GINT rank, GINT *dims, GDOUBLE *data , GINT ntags, GDOUBLE *ftags,
const char *descriptor, GFPOS *datablk);

DESCRIPTION: Required. Puts the data to the file.

ARGUMENTS : rank : rank of data set. Duplicate of that used in SetDims. May be deprecated.

dims : dims of data set. Duplicate of that used in SetDims. May be deprecated.

data : data to be written. Must be of length

(dims[0] * dims[1] ... * dims[rank-1].
ntags : number of data descriptor tags.

ftags : array of data descriptor tags, of length ntags.
descriptor: data descriptor.

datablk : (returned) offset of the dataset in the file.

RETURNS : TRUE on success; else FALSE. Failure occurs if Open has not been called, or

if any of the internal writes fails. Error number is set.

37

GINT GBinWriter::GetTotalWritten();

DESCRIPTION: Gets total number of data items written to file by WriteData.
ARGUMENTS : none.

RETURNS : total number of items written.

const char *Error();

DESCRIPTION: Provides error string if the error condition has been set.

ARGUMENTS : none.

RETURNS : error string.

GINT ErrorID();

DESCRIPTION: provides error condition number if an error is encountered.

ARGUMENTS : none.

RETURNS : condition number

6.2 GBinReader

In this section we present the public interface methods for the GBinReader
class. Unless otherwise indicated, the method is not required to be called.

The first set of methods apply to the entire file, or to the meta-data. The
second set apply to individual datasets within the file.

GBinReader(GBOOL isCollective=FALSE, GBOOL isIndependent=TRUE, GINT ioTaskID=0);

DESCRIPTION: Required. Constructor.

ARGUMENTS : isCollective : flag that tells if writer is to operate in collective mode,

meaning that all processors write collectively to the same file.

If FALSE, then the file used in the GBinWriter::Open
call must be distinct for each processor.

isIndependent: flag that tells if reader is to operate independently. If TRUE,

then host processor carries out the reads. If FALSE, then reader

will receive all data from the task id specified by ioTaskID.

ioTaskID : specifies the processor id from which to receive data if isIndependent=FALSE.

GBOOL Open(const char *filename, GIOS MODE iomode);

DESCRIPTION: Required. Opens file for writing. Should be the first call made.

ARGUMENTS : filename : name of file to which to write data.

iomode : open mode, one of: gios::in, gios::out, gios::inout, gios::app,

38

gios::binary, gios::ate (’at end’). Multiple modes can be specified

by using the ’|’ (’or’ operator), e.g. gios::binary | gios::ate to

open as a binary file with file pointer at the end of the file.

Open automatically adds the gios::binary flag.

RETURNS : TRUE on success; else FALSE.

void Close();

DESCRIPTION: Required. Closes GBinStream to file, and frees up all data.

ARGUMENTS : none.

RETURNS : none.

char *GetMetaDesc()

DESCRIPTION: Gets meta-data (file) descriptor.

ARGUMENTS : none.

RETURNS : char * to descriptor string.

GINT GetNumMeta();

DESCRIPTION: Gets the number of meta-data items

ARGUMENTS : none.

RETURNS : integer number of items. May be 0.

GDOUBLE *GetMeta();

DESCRIPTION: Gets a pointer to the meta-data itself.

ARGUMENTS : none.

RETURNS : GDOUBLE pointer to meta-data.

GINT GetNumDataSets();

DESCRIPTION: Gets the total number of dataset within the file.

ARGUMENTS : none.

RETURNS : GINT number of datasets. May be 0.

const char *Error();

DESCRIPTION: Provides error string if the error condition has been set.

ARGUMENTS : none.

RETURNS : error string.

GINT ErrorID();

DESCRIPTION: provides error condition number if an error is encountered.

ARGUMENTS : none.

RETURNS : condition number

The following GBinReader methods apply to individual datasets. The

39

datasets are referenced by an id (or by a label). The dataset id is an GINT
integer in the range 0 to GBinReader::GetNumDataSets() - 1.

const char *GetLabel(GINT idataset);

DESCRIPTION: Gets label to dataset, if there is one.

ARGUMENTS : idataset: dataset id.

RETURNS : char * to label; else NULL.

GINT GetNumTags(GINT idataset);

DESCRIPTION: Gets the number of data tags associated with dataset.

ARGUMENTS : idataset: dataset id.

RETURNS :

GDOUBLE *GetTags(GINT idataset);

DESCRIPTION: Gets the data tags associated with dataset

ARGUMENTS : idataset: dataset id.

RETURNS : GDOUBLE pointer to tag data. Array is of size GetNumTags()

GINT GetRank(GINT idataset);

DESCRIPTION: Gets dataset rank

ARGUMENTS : idataset: dataset id.

RETURNS : GINT rank

GINT GetDims(GINT idataset, GINT idir);
GINT *GetDims(GINT idataset);

DESCRIPTION: Gets the dimensions of the data.

ARGUMENTS : idataset: dataset id.

idir : coordinate direction of interest.

RETURNS : First method gives the size of data in idir coordinate direction;

second method gives an array of size rank, containing each of the

coordinate dimensions. Error if NULL.

GINT GetCoordDims(GINT idataset, GINT idir);

DESCRIPTION: Gets the dimensions of the coordinate associated with the dataset.

ARGUMENTS : idataset: dataset id.

idir : coordinate direction of interest.

RETURNS : dimension of the idir coordinate. May be 0.

GINT GetNumVert(GINT idataset);

DESCRIPTION: Gets the number of vertices associated with dataset

ARGUMENTS : idataset: dataset id.

RETURNS : Number of vertices. May be 0.

Point3D *GetVert(GINT idataset);

DESCRIPTION: Gets vertices associated with dataset

ARGUMENTS : idataset: dataset id.

RETURNS : Point3D array of length GetNumVert() containing the vertices.

40

If NULL, and GetNumVert() is nonzero, then there is an error.

GDOUBLE *GetGridData (GINT idataset, GINT idir, GDOUBLE *x, GINT n);

DESCRIPTION: Gets the coordinate grid data for direction idir.
ARGUMENTS : idataset: dataset id.

idir : coordinate direction of interest.

x : pointer to array of coordinate values.

n : number of coordinate values.

RETURNS : On success, returns x pointer; else returns NULL.

GDOUBLE *GetFieldData(GINT idataset, GDOUBLE *data, GINT n);
GDOUBLE *GetFieldData(const char *label, GINT ids˙start, GDOUBLE *data, GINT n);

DESCRIPTION: Retrieves the dataset data. The first method retrieves data based on

dataset id. The second retrieves data based on the dataset label (if any),

and begins searching starting from, and including, the specified

dataset id.

ARGUMENTS : idataset : dataset id.

(label : dataset label)

(ids_start: tells reader to start searching from this dataset id.a)

data : pointer to retrieved data.

n : total number of GDOUBLE values in data.
RETURNS : On success, returns data pointer; else returns NULL.

6.2.1 Some examples

GBinWriter example

The following is an code fragment that instantiates a writer object, and
performs a parallel file write:

GINT idims[2], rank;

GDOUBLE meta [3], u[100], x[10], y[10];

GBinWriter wgbin(TRUE,TRUE,0); // Create writer in collective mode, do independent writes,

// Since independent, last parameter irrelevant.

if (!wgbin.Open("foo.dat", FALSE)) exit(1); // Opens ’foo,dat’, checks for valid file type

// Appends if it exists; else creates a new file.

// FALSE says not to truncate if file exists.

meta[0] = (GDOUBLE)icycle_;

meta[1] = time_;

meta[2] = dt_;

wgbin.SetMeta(3, meta, "FOO_TEST"); // Set meta-data

rank = 2;

41

idims[0] = 10;

idims[1] = 10;

// fill u, x, y, ...

wgbin.SetDims(rank, idims)) ; // rank, Set dimensions

wgbin.SetCoord(1, idims[0], x, "X1")) ; // Set 1-coordinate

wgbin.SetCoord(2, idims[1], y, "X2")) ; // Set 2-coordinate

wgbin.WriteData(rank, idims, u, 0, NULL,

"Field_Data", NULL)); // Write dataset to file

wgbin.Close(); // Close file

GBinReader example

The following is an code fragment that instantiates a reader object, and
performs a parallel file read:

GINT j, n, NN, *idims, rank;

GDOUBLE pmax=0.0;

GVector p();

char label[80];

GBinReader rgbin(TRUE,TRUE,0); // Create reader in collective mode, do independent reads,

// Since independent, last parameter irrelevant.

if (!rgbin.Open("foo.dat")) exit(1); // Opens ’foo,dat’, checks for validity, reads header.

for (n=0; n<rgbin.GetNumDataSets(); n++) { // Loop over all datasets in file.

// If dataset label is not "Pressure", go to next one.

if (strcmp(rgbin.Getlabel(n), "Pressure") != 0) continue;

rank = rgbin.GetRank(n); // Get dataset rank.

idims = rgbin.GetDims(n); // Get dataset dimensions.

for (j=0,NN=1; j<rank; j++) NN *= idims[j];

p.Resize(NN);

// Get the field data for this dataset.

if (rgbin.GetFieldData(n, p,Data(), NN,) == NULL) {

cout << "Reader error: " << rgbin.Error() << endl;

exit(1);

}

pmax = MAX(umax, fabs(p.Max()));

}

rgbin.Close(); // Close file

cout << "Max Pressure = " << pmax << endl;

42

Chapter 7

GASpAR Utility classes and
functions

We continue our consideration of GASpAR administrative capabilities in this
chapter by highlighting some classes or functions that are particularly useful
when writing solvers or setting up a problem. This list is hardly complete,
as there are many “utility” features in the code that are not described here.
Most of these features, however, require a lot of additional explanation that
is not relevant for a user, whereas the classes and function presented here
may well be.

In no particular order we present...

7.1 Linked lists for managing fields and other

things

There are a number of linked–list classes that help to manage lists of objects:
the GElemList() manages lists of elements, and the GFieldList() manages
lists of field objects, and the class GTList is a template list class that man-
ages lists of vectors, and various buffers. Typically, linked–lists are used in
the upper level tie (driver)–code, or in the upper–level equation solvers (e.g.
StokesSolver). It is easy to navigate a linked–list (“list”), which can be

43

done by indices or in other ways. It is also easy to remove lists elements or
add to the list. The lists are important for managing quantities on a dynamic
grid.

The user must remember that there is both a random–access feature to all
lists, and a list–directed (ordered) access feature. The random–access feature
is called by specifying a list-member’s id, while the ordered access is achieved
by calls without an id, so that the current member is used. The following
are examples illustrating the use of both types of access.

This fragment uses random access to access all members of the element list:

RectQuad2D *elem;

for (i=0; i<my_element_list->size(); i++) {
elem = (*my_element_list)[i]; // or my_element_list->member(i);

{do something with element...}
}

This fragment uses ordered–access for the same thing:

RectQuad2D *elem;

my_element_list->start(NULL);

for (i=0; i<my_element_list->size(); i++) {
elem = my_element_list->member();

{do something with element...}
my_element_list->next();

}

Note that with ordered–access, we must initialize the list with a call to
start(NULL) (NULL indicates the beginning of the list; a pointer to any
list member can be specified), and continue, in order, to the next element
pointer with a call to next().

7.2 ParamReader

The ParamReader was introduced in Chapter 2, mainly as a way of ini-
tializing system–wide parameters. However, it can be configured easily to be
used anywhere that external data is required or desired (e.g., in guser.cpp).

44

ParamReader is derived from GStream, so it has a constructor similar to
that of GBinReader and GBinWriter. The user–API is very simple:

ParamReader(GBOOL isCollective=FALSE, GBOOL isIndependent=TRUE, GINT ioTaskID=0);

DESCRIPTION: Required. Constructor.

ARGUMENTS : isCollective : flag that tells if writer is to operate in collective mode,

meaning that all processors write collectively to the same file.

If FALSE, then the file used in the GBinWriter::Open
call must be distinct for each processor.

isIndependent: flag that tells if reader is to operate independently. If TRUE,

then host processor carries out the reads. If FALSE, then reader

will receive all data from the task id specified by ioTaskID.

ioTaskID : specifies the processor id from which to receive data if isIndependent=FALSE.

void SetParams(char *format, ...);

DESCRIPTION: Sets the parameter names which may exist in the file.

ARGUMENTS : format : printf--like format specification string. This string

establishes the data-types for the parameter (names) that follow.

Valid data types are: %i, %l (GINT), %f (GDOUBLE), %s (string).

... : comma--separated list of parameter-name strings. The parameter

in the file that corresponds to this name will be interpreted as

having a data type corresponding to that in the position of the name in the

format string. All parameters must have a data type.

RETURNS : none.

GINT GetParams(char *filename, char *blk˙name, ...);

DESCRIPTION: Gets the parameter data from the specified block in the

the specified file.

ARGUMENTS : filename: name of parameter file

blk_name: name of parameter block within file. All parameters must reside

within a named block.

... : variable--list argument, one argument for each of the parameter

labels specified in SetParams. Addresses of arguments only

must be passed, and they should be of the data type specified

in the format string used in the call to SetParams.
RETURNS : TRUE on success; else FALSE; ParamReader::Error() gives

an error string.

void SetBuffSize(GINT n);

DESCRIPTION: Sets the size of the read--buffer for this configuration.

ARGUMENTS : n: Maximum number of bytes that can be read into buffer.

RETURNS : none.

As an example, we configure a parameter file with 4 parameters:

45

GINT ion_state;

GDOUBLE time, density_0, temperature_0;

char finit[80];

ParamReader MyInit(TRUE, TRUE, 0);

strcpy(finit,"helium.dat");

MyInit.SetParams("%i %f %f %f %s"

, "Ionization_State"

, "Time"

, "Initial_Density"

, "Initial_Temperature"

, "Density_file");

Then, we parse the parameter file and place any parameters found into the
appropriate variables:

if (!MyInit.GetParams("user.dat", "HELIUM_DATA"

, &ion_state

, &time

, &density_0

, &temperature_0;

, finit))

cout << "Initialization failed: error: " << MyInit.Error() << endl;

exit(1);

Note that the variable names in the call to GetParams must match the
order in which they are issued parameter names in the call to SetParams.
The data file for this configuration, stored in the file “user.dat”, might look
like

HELIUM_DATA

{

//__

//__

Time : 0.0 ; // In seconds

Initial_Temperature: 1.0e4 ; // In Kelvin

Initial_Density : 1.0e-8; // In g/cm^3

Ionization_State : 1 ; // 0->no ionization, ...

}

In this example, there is no parameter data for the ”Density file” parameter;
therefore, its value is unchanged after the GetParams call. Also, note that
the order of the parameters within the file does not matter. There is no rule

46

for constructing parameter “names”; in reality, these are parameter “string”
descriptions. However, they must appear in the file exactly as they appear
in the ::SetParams call. The file structure and the comments (everything
after a “//”) were already discussed in section 2.3.

There is limited ability within the ParamReader class to alter the file struc-
ture. For example, the block delimiters, end-of-line characters, parameter
name delimiter, and comment characters may all be changed on construction,
by providing “Set” methods for these quantities in the class specification; the
member data corresponding to these quantities already exists. Another pos-
sible (and easy) modification would provide a “Set” method (or constructor)
that tells the reader to make the parameter names (strings) case-insensitive.

7.3 MeshReader

The MeshReader was introduced in section section 2.4. Here we present
the public–access methods provided by this class. At a future date, we will
provide the file format(s) that MeshReader can read.

MeshReader(GINT maxbuff=65536)

DESCRIPTION: Required. Constructor.

ARGUMENTS : maxbuff : sets the maximum buffer size that class can handle.

Larger meshes will require a larger buffer size.

GBOOL Open(const char *filename);

DESCRIPTION: Opens mesh file for reading

ARGUMENTS : filename: name of mesh file.

RETURNS : TRUE on success; else FALSE.

void Close();

DESCRIPTION: closes mesh file stream

ARGUMENTS : none.

RETURNS : none.

void SetProc(GINT id);

DESCRIPTION: Sets processor id for subsequent reads. Only data

designated in file for this processor will be retrieved.

ARGUMENTS : id: processor id.

RETURNS : none.

47

GINT GetNumRetrieved();

DESCRIPTION: Gets number of element blocks retrieved

ARGUMENTS : none.

RETURNS : integer number of elements

GINT GetDynRange();

DESCRIPTION: If nodes are listed, gives the maximum node id.

ARGUMENTS : none.

RETURNS : integer dynamic range

GINT GetNumProcs();

DESCRIPTION: Gets total number of processors that have data represented in file.

ARGUMENTS : none.

RETURNS : integer number of processor

GINT GetDim();

DESCRIPTION: Gets data dimensionality or rank.

ARGUMENTS : none.

RETURNS : integer rank

GINT GetElem(ELEMTYPE &etype, Point3D *&vertex, GINT *&xN,
GIBuffer *&node˙ids, GIBuffer *&bdy˙nodes, GBTBuffer *&bct);

DESCRIPTION: Gets data for the next element in the file corresponding to the

processor set in SetProc. For allocated quantities, caller is

responsible for deleting.

ARGUMENTS : etype : element type, of type ELEMTYPE.

vertex : array of length $2^it rank$ containing vertices. Allocated in reader

xN : array of length rank containing expansion order in each

coordinate direction. Allocated.

node_ids : node ids (if in file) for each of (xN[0]*xN[1]...*xN[rank-1]) nodes

in element. Allocated.

bdy_nodes: indices into the node˙ids array of the boundary nodes. Allocated.

bct : for each of the bdy˙nodes indices, the boundary condition type.

Allocated.

RETURNS : 0 on success; else error id is set. User may retrieve error condition using

ErrorID(), and error string using Error().

const char *Error();

DESCRIPTION: Provides error string if the error condition has been set.

ARGUMENTS : none.

RETURNS : error string.

GINT ErrorID();

48

DESCRIPTION: provides error condition number if an error is encountered.

ARGUMENTS : none.

RETURNS : condition number.

7.4 MTK

The MTK (for Math ToolKit) is a namespace that includes all of the basic
math operations allowed for vectors and matrices. These are set off from
the vector and matrix methods so that they can be “tuned” in a platform–
dependent way, in order to achieve better performance. Since most of a time
cycle is spent in the iterative solver doing operator–vector products, this
separation of the underlying operations seems beneficial. In fact, all math
operations in GTVector and GTMatrix are carried out using the MTK
functions.

The routines that actually carry out the operations in the MTK are written
in Fortran, and a wrapper provides the C-Fortran interface. The decision was
made to write the basic linear algebra operations in Fortran because it was
found early on that there was some difficulty in vectorizing the inner loops
for the comparable C functions. These generic linear algebra routines are
written to be “cache-friendly”; that is, they are written to take advantage
of a specified cache size, the preprocessor variable szCACHE, (platform
dependent), but are otherwise not tuned for a particular architecture.

49

Chapter 8

GASpAR: In depth

We describe in this chapter our motivation for developing the code, and we
present details on the formulation of computational operators, communica-
tion objects, and adaption as used in the code. In the process, moreover,
we attempt to shed some light on various design considerations. Most of
this chapter is adapted from the paper “Geophysical-astrophysical spectral-
element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid
dynamics simulation”, J. Comp. Phys., in press (2005), by D. Rosenberg,
A. Fournier, P. Fischer, and A. Pouquet. This paper is also available at
www.arxiv.org: math.NA/0507402

Accurate and efficient simulation of strongly turbulent flows is a preva-
lent challenge in many atmospheric, oceanic, and astrophysical applications.
New simulation codes are needed to investigate such flows in the parameter
regimes that interest the geophysics communities. Turbulent flows are linked
to many issues in the geosciences, for example, in meteorology, oceanography,
climatology, ecology, solar-terrestrial interactions, and solar fusion, as well
as dynamo effects, specifically, magnetic-field generation in cosmic bodies by
turbulent motions. Nonlinearities prevail when the Reynolds number Re is
large. The number of 3-dimensional degrees of freedom (d.o.f.) increases as
Re

9/4 as Re→∞ in the Kolmogorov 1941 framework [16, §7.4]. For aeronau-
tic flows often Re > 106, but for geophysical flows often Re � 108 [11, 28].
Also, computations of turbulent flows must contain enough scales to encom-
pass the energy-containing and dissipative scale ranges distinctly. Uniform-

50

grid convergence studies on 3D compressible-flow simulations show that in
order to achieve the desired scale content, uniform grids must contain at
least 20483 cells [34]. Today such computations can barely be accomplished.
A pseudo-spectral Navier-Stokes code on a grid of 40963 uniformly spaced
points has been run on the Earth Simulator [19], but the Taylor Reynolds
number (∝

√
Re) is still no more than ≈ 700, very far from what is required

for most geophysical flows. The main goal of the present code development is
to ask, if the significant structures of the flow are indeed sparse, so that their
dynamics can be followed accurately even if they are embedded in random
noise, then does dynamic adaptivity offer a means for achieving otherwise
unattainable large Re values. Thus, we have developed a dynamic geophysi-
cal and astrophysical spectral-element adaptive refinement (GASpAR) code
for simulating and studying turbulent phenomena.

Several properties of spectral-element methods [SEMs, 9, 29] make them
desirable for direct numerical simulation of geophysical turbulence. Perhaps
most significant is the fact that SEMs performed at high polynomial degree
are inherently minimally diffusive and dispersive. This property is clearly
important when trying to simulate high-Re flows with multiple spatial and
temporal scales that characterize turbulence. Also, because SEMs use finite
elements, they can be used in very efficient high-resolution turbulence studies
in domains with complicated boundaries. It is an important feature that
SEMs are naturally parallelizable [e.g. , 15]. Equally important, SEMs not
only provide spectral convergence when the solution is smooth (see Appendix
C eq. C.3), but are also effective when the solution is not smooth.

Our goal in this chapter is to describe GASpAR and, in particular, the pro-
cedures used in our dynamic adaptive refinement (DARe) technique. We
provide SEM and DARe algorithm details here that are not available else-
where, in the hope of supporting readers who wish to create their own codes.
Furthermore, we propose several linear and nonlinear problems as standards
to test fundamental aspects of flows that are encountered in turbulence stud-
ies, and use these to test our DARe algorithms. Because these problems have
known exact time-dependent solutions, quantitative errors can be reported
for DARe simulations. Our code is object-oriented, and we will describe how
object-oriented programming serves our purposes. The code is parallelized,
but we will discuss this aspect only when it is intrinsic to the algorithms.
While we are motivated by the performance potential of SEMs generally,

51

([8], [35]) we do not emphasize performance metrics in the present chapter,
in favor of focusing on algorithmic detail and solution accuracy.

First we describe (§8.1.2) SEM discretization on a particular class of prob-
lems and introduce many of the required formulas, operators, and so forth.
We explain (§8.1.4) how continuity is maintained between nonconforming
elements. We provide linear-solver details in §8.1.5, and introduce innova-
tions required to solve on nonconforming elements. In §8.1.6 we present our
new adaptive-mesh algorithms: how neighboring elements are found, how
conformity is established, and the procedures for refinement and coarsening.
In §8.1.6 we describe a new implementation of element-boundary commu-
nication. DARe criteria are discussed in §8.1.6. Then, in §8.2 we propose
and perform examples from two test-problem classes with time-dependent
analytic solutions: the linear advection-diffusion equation (§8.2.2), demon-
strating feature tracking of smooth and isolated features; and the 2D Burgers
equation (§8.2.3), testing the ability of DARe to track well-defined increas-
ingly sharp structures arising from nonlinear dynamics.

8.1 Temporal and dynamically adaptive spa-

tial discretizations

8.1.1 Adaptive-mesh geometry

Conforming adaptive methods (where entire element boundaries geometri-
cally coincide, as in Fig. 8.1a) on quadrilaterals and hexahedra are gradually
being replaced by nonconforming adaptive methods. One reason is that lo-
cally adaptive mesh generation for conforming methods is complicated [30].
Another reason is that adaptive conforming meshes can lead to high-aspect-
ratio elements that can cause difficulties for a linear solver [13]. Moreover,
the fact that nonconforming elements can better localize mesh refinement
implies that the computational cost over all elements can be reduced [24].

Nonconforming elements can be geometrically and/or functionally noncon-
forming. In the former case (Fig. 8.1b), neighboring-element boundaries
do not entirely coincide; in the latter, the polynomial expansion degree

52

(a) IE IE

EI∂ EI∂

6 7

9

12

15

10

13

16 17

14

112

5

87

4

10

3

614

12

10

11

13

92

5

8

4

10

3

1,1 2,3

1 2ID

(b) EI EI

EI

EI∂

EI∂

EI∂

6

3

0 1

4

7

2

5

8

9

11

13

15
17

10

12

14

16
18

0

3

6

1

4

7

2

5

8

9 10 11

12 13 14
171615

18 19 20

232221
262524

D 1 2

3

1,1

3,3

2,3

I

Figure 8.1: (a) Conforming degree p = 2 mesh showing the mapping of global
(i.e., unique) d.o.f. in the domain D̄ to local (i.e., redundant) d.o.f. in the
elements Ek. Edge subscripts give element key k and edge index from s = 0
counterclockwise to s = 3. Element E1 is bounded at the east by ∂E1,1 and
E2 at the west by ∂E2,3 = ∂E1,1. Interface matching occurs by assignment,
so the assembly matrix Ac is Boolean. (b) Geometrically nonconforming
(functionally conforming) mesh. Here E2 and E3 are bounded at the west by
“child” edges ∂E2,3 and ∂E3,3, and E1 is bounded at the east by the “parent”
edge ∂E1,1 = ∂E2,3

⋃

∂E3,3. Interface matching occurs by interpolation of
global d.o.f. from the function space associated with ∂E1,1 onto the union of
those associated with the ∂Ek,3, which contains the function space of ∂E1,1.

53

p in neighboring elements differs. Several SEM researchers have adopted
a method that simultaneously alters element size h and configuration (h-
refinement) and the polynomial degree p across neighboring elements (p-
refinement), providing for a so-called h-p-refinement strategy. The mortar
element method (MEM) [1, 4, 10, 26] variationally minimizes the Lebesgue
L2 norms of the discontinuities across nonconforming-element boundaries.
MEM has been shown to produce optimal convergence in solving the incom-
pressible Stokes equation [3], and has been demonstrated experimentally to
produce excellent results when used as a basis for DARe in 1D [27]. Noncon-
forming h-p (not always dynamic) adaptive MEMs have been developed for
studying turbulence [17, 18], ocean simulation [20, 25], flame front deforma-
tion [12], electromagnetic scattering [23], wave propagation [6], seismology
[7] and other topics. However, MEM for p-type refinement has been cited as
sometimes causing instability [30]. Also, in most flows of interest to us, it
is the nonlinear interaction of the different scales that determines not only
the structures that form but also their statistics and time evolution. This
suggests that reasonably high-order approximations are required in each el-
ement during much of the evolution. Thus, in the present work we restrict
ourselves to a nonconforming fixed-p, h-refinement strategy only and use
an interpolation-based scheme to maintain continuity between nonconform-
ing elements. This method [13, 24] is akin to the formulation developed
in [5]; however, the latter deals with functionally nonconforming elements,
while the former relates to the geometrically nonconforming elements of in-
terest here. We contrast this choice with other familiar DARe codes [e.g. ,
10], which, while object-oriented, uses the MEM as the basis of its dynamic
adaptivity, but does not accommodate h-refinement. While the interpolation-
based matching scheme has been widely used for functionally nonconforming
meshes, to the best of our knowledge, our implementation of it in the context
of fully dynamic adaptivity is unique and new.

8.1.2 Discretization of a nonlinearly coupled dynami-
cal PDE system

In order to focus on DARe methodology, we concentrate on the simplest
nonlinearly coupled PDE system that encompasses many of the difficulties
in simulating fluid turbulence. Thus we discretize the 2D Burgers equation,

54

presenting in turn the spatial operators and the time discretizations. These
sections are in part a review of well established methods but also provide
implementation details unavailable elsewhere, and enable us to discuss code
design motivations.

The equation considered in this work is the advection-diffusion equation for
velocity ū(~x, t):

∂tū + ~c ·
~∇ū = ν∇2ū, (8.1)

where ~c may be ū (so that (8.1) is the Burgers equation), or ~c = ~c(t) (a
prescribed uniform linear-advection velocity) and ν ∝ Re

−1 is the kinematic
viscosity. This is to be solved in a spatiotemporal domain (~x, t) ∈ D×]0, tf]
subject to the boundary and initial conditions

ū(~x, t) = ~b(~x, t) for (~x, t) ∈ ∂D×]0, tf] , (8.2)

ū(~x, 0) = ū0(~x) for ~x ∈ D. (8.3)

Variational approach to spatial discretization

Then the discretization of (8.1) starts from the following “weak” variational
form: Find the trial function ū(·, t) ∈ U~b such that for any test function
~v ∈ U~0,

〈~v, ∂tū〉+ 〈~v, Cū〉 = −ν〈 ~~∇vt,
~~∇u〉, (8.4)

where C := ~c ·
~∇ is the advection operator and the inner product is (C.8).

(See the Appendix C for the complete mathematical details.) The treatment
of (8.3) will not be made explicit but may be easily inferred from our general
discussion.

Assume that D̄ can be partitioned as in Table C.1. Adopt a Gauss-Lobatto-
Legendre (GLL) basis, that is, expand uµ and vµ using (C.6). Inserting these
expansions into (8.4), we arrive at the semi-discrete ODE system problem:
Find the numerical solution ūn(·, t) = ~φtu(t) ∈ Ph,~pU~b such that for all
~v = ~φtv ∈ Ph,~pU~0,

vt
M

du

dt
+ vt

Cu = −νvt
Lu, (8.5)

collocated at K(p + 1)d mapped Lagrange node points (Table C.1), where
M = diagk Mk, C = diagk Ck, and L = diagk Lk are the unassembled block-
diagonal mass matrix, linear or nonlinear advection matrix [cf. 9, ch. 6], and

55

diffusion matrix, respectively. The respective d(p + 1)d-square matrix blocks
for element Ek are formulated in Appendix C.

Note that after assembly as discussed in §8.1.4, (8.5) must hold for the re-
striction ~v|Ēk

= ~φt

kvk of ~v to the kth element Ek, so that a coupled ODE
system for ūn|Ēk

= ~φt

kuk would in an assembled state be

Mk
duk

dt
+ Ckuk = −νLkuk. (8.6)

Assembly guarantees continuity of ūn across all elements, which in turn is
sufficient to keep uµ

n ∈ H1(D). There are conforming and nonconforming
element configurations, as illustrated in Fig. 8.1, and an interpolation-based
scheme to enforce continuity along a nonconforming interface is the subject of
§8.1.4. (Throughout the remainder of this chapter “nonconforming” will refer
to geometrically nonconforming elements, keeping the polynomial degree p
fixed in all elements.)

Semi-implicit multistep time discretization

GASpAR employs semi-implicit multistep time discretization schemes. The
diffusion is always solved fully implicitly, the time derivative is approximated
using a backward-difference formula (BDF) of order Mbdf [9, 21] and the
advection term is approximated by an explicit extrapolation-based method
(Ext) of order Mext [22]. Then the integral of (8.6) from tn−1 to tn is approx-
imated by

H
n
kun

k =
n−1
∑

m=n−Mbdf

βm,n
bdf M

m
k um

k −
n−1
∑

m=n−Mext

βm,n
ext C

m
k um

k , (8.7)

where
H

n
k := βn,n

bdfM
n
k + νL

n
k (8.8)

is the spectral-element Helmholtz matrix. Although the matrices Lk and Mk

in (8.6) were t-independent, they are time-indexed in (8.7) and (8.8) because
DARe will, in general, reconfigure the partition (Table C.1) over time. For
this reason the coefficients βm,n are re-computed for each tn after a recon-
figuration, as in the traditional schemes cited, except that the timestep ∆tm

56

may vary with m as the smallest spectral-element diameter hm := mink hm
k

(Table C.1) changes. The accuracy of solving (8.7) follows from many known
SEM error estimates, e.g., for the Helmholtz problem on conforming meshes
[21, §2.3.6] or the Poisson problem on non-conforming meshes [21, §5.5.2.1].
In §8.1.5 the solution of (8.7) is explained.

8.1.3 Implications for code design

The fully discretized advection-diffusion equation (8.7) brings up several is-
sues impinging on code design. First, all mesh information is separated from
all other code objects, since element type information can be encoded easily
into the objects that require this distinction. Second, solution data must
be available at multiple times tm, so this information is provided in a data
structure. Thus arise both element and field objects. The former contains
all d-dimensional mesh information, including the Gauss-quadrature nodes
and weights (Table C.1). The element object also contains neighbor-list in-
formation and the hierarchical element refinement level ∝ − log2 hk of each
element Ek. The field object contains the data um quantifying the physical
system of interest at each tm.

The 1D basis functions, the derivative matrices and Gauss-quadrature nodes
and weights (Table C.1) are encapsulated in basis classes (objects), and the
1D matrices such as (C.9,C.10,8.8) are objects that contain pointers to the
basis objects and to a local element object. Generally d-dimensional SEM
matrices are not constructed but are applied using 1D tensor-product matrix
factors. High-level objects encapsulate the solution of (8.6) or other equa-
tions, and have common interfaces that allow the equations to take a single
time integration step. In other words, all high-level equation-solver classes
are used in the same way; they are constructed using linked lists of elements,
fields and multidimensional SEM objects that depend only on the underlying
mesh. Hence, the classes that handle DARe and enforce continuity between
elements are independent of the system being solved.

57

8.1.4 Continuity and global assembly of nonconform-
ing elements

Conforming discretizations enforce continuity simply by assigning the same
weighted-averaged ūn values to the coinciding node points ~x~,k = ~x~ ′,k′ along
element edges ∂Ek,s = ∂Ek′,s′ (Fig. 8.1a). This matching condition consists of
expressing the Ng global (unique) d.o.f. ug in terms of the local (redundant)
d.o.f. as d(p + 1)d-vectors uk, k ∈ {1, · · ·K}. Generally Ng < Kd(p + 1)d.
This expression is accomplished by using a Kd(p+1)d×Ng Boolean assembly
matrix Ac (also called a scatter matrix):

u = Acug. (8.9)

The transpose A
t

c performs the gather operation associated with the Ac scat-
ter. In practice, Ac is never formed explicitly but is instead applied.

In the nonconforming case ∂Ek,s (∂Ek′,s′ and most boundary-node points
are not coinciding (Fig. 8.1b). In the present work, unlike in MEM, the in-
terface matching does not alter the underlying function space U~b (§8.1.2). To
illustrate, consider the nonconforming mesh in Fig. 8.1b. For the moment
denote the global nodes, those nodes residing on the east parent edge ∂E1,1,
by ~xg,i, i ∈ {2, 5, 8}, and denote the nodes on the west child edges, ∂E2,3 and
∂E3,3 by ~xj, j ∈ {9, 12, 15, 18, 21, 24}. A globally continuous function can
always be found in U~0 in a proper subspace of the span of globally discon-
tinuous functions φj(~x) that interpolate from the local nodes ~xj. Therefore
the weak formulation of (8.1) implies functions φg,i(~x) exist that are globally
continuous across D, span U~0, and interpolate from the global nodes ~xg,i.
Therefore the matrix A, that generalizes the Boolean scatter matrix Ac used
in the conforming-element formulation, can be conceived as having entries
φg,i(~xj), and accommodates both conforming and nonconforming elements.
It is convenient to factor A = ΦAc, where Φ is the interpolation matrix
from global to local d.o.f. and Ac is locally conforming. Another illustration
appears in [32, (14–16)].

To accommodate Dirichlet boundary conditions (8.2) into the solution, we
employ a masking projection Π, which is diagonal with unit entries every-
where except corresponding to nodes on Dirichlet boundaries, where there
are zero entries. Any field ~φtu = ū ∈ U~b may be analyzed as ū = ūh + ūb,
where uh :=ΦΠAcug constructs the projection ūh := ~φtuh ∈ U~0 of ū, that is,

58

Table 8.1: PCG algorithm modified for nonconforming element meshes.

uh = 0 // initialize homogeneous term
r = Σ(f −HSub) // initialize residual
w = 0 // initialize search vector
ρ1 = 1 // initialize parameter
while not converged:

e = SP
−1r // error estimate

ρ0 = ρ1, ρ1 = rtWe // update parameters
w ← e + wρ1/ρ0 // increment search vector
r′ = ΣHw // image of w
α = ρ1/w

tWr′ // component of uh increment
uh ← uh + αw // increment uh along w
r ← r − αr′ // increment residual

end
u = Sf(uh + ub).

its homogeneous part, and ub := u− uh constructs ūb ∈ U~0, which vanishes
at the interior nodes ~x~,k ∈ D\∂D. Inserting this analysis into (8.5) (noting
~v ∈ U~0 ⇒ v = ΦΠAcvg) and repeating the time discretization leading to
(8.7), we arrive at the following linear equation to solve for ug at each time
step:

vt
Hu = vtf ∀vg =⇒ A

t

cΠΦt
HΦΠAcug = A

t

cΠΦt(f −Hub), (8.10)

where H :=diagk Hk is symmetric positive-definite (8.8) and we have denoted
all past-time terms from time-derivative expansion and advection in (8.7)
by f . The preconditioned conjugate-gradient [PCG, 33, 37] algorithm is
used to solve (8.10). While (8.10) shows explicitly that the l.h.s. matrix is
symmetric nonnegative-definite, it is not in a form easily solved in parallel.
Left-multiplying (8.10) by ΦΠAc, we get the following local problem to solve
for uh:

ΣHuh = Σ(f −Hub), where Σ := ΦΠAcA
t

cΠΦt. (8.11)

The direct stiffness summation (DSS) matrix Σ is coded so that the gather
and scatter are performed in one operation (§8.1.6), which reduces parallel
communication overhead [35].

Two other operators must be introduced that help maintain H1(D) continu-
ity. The inverse multiplicity matrix W is diagonal, computed by initializing

59

a collocated vector gµ
~,k = 1 ∀~, k, µ, setting child boundary nodes to 0, per-

forming g ← ΦAcA
t

cΦ
tg, then setting

W µ,µ′

~,k,~ ′,k′ =

{

δµ,µ′

/gµ
~,k, if ~x~,k = ~x~ ′,k′ coincides with a global node,

0, otherwise.

For example, corresponding to Figs. 8.1a & b the diagonals of W are

(1, 1, 1
2
, 1, 1, 1

2
, 1, 1, 1

2
, 1

2
, 1, 1, 1

2
, 1, 1, 1

2
, 1, 1)

and (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
2
, 1

2
, 0, 1

2
, 1

2
, 0, 1, 1, 0, 1, 1),(8.12)

respectively. After a DSS operation (8.11) the true global d.o.f., nodes 2,
5, and 8, carry all the information held by nodes 9, 12, 15, 18, 21, and
24, so for the purpose of the PCG solve the latter give zero W entries in
(8.12). Given that global inner products in the PCG solve are collected from
local contributions from each element (i.e., Table 8.1, the lines involving W),
the W zeros prevent double counting when computing these products, and
prevent non-global d.o.f. (e.g., child edge nodes) from contributing. Note also
that in Fig. 8.1b the W entries for nodes 17 and 20 have value 1

2
, as expected

for nodes such as these that lie on conforming edges. The H1 “smoothing”
operation in the PCG algorithm also uses W. In smoothing, we have that
ḡ = Sg, where S := ΦΠAcA

t

cW. Smoothing acts only on quantities all of
whose d.o.f. have already been distributed to global d.o.f. using DSS. The
result of smoothing is a quantity that is interpolated properly to the child
edges and that is expressed without multiple counting at multiple local nodes
that represent the same physical location. The W matrix weights the operand
g so that the respective sums on the parent (global) edge nodes (nodes 2,
5, and 8 in the case above) contribute to the result ḡ just once each, and
the child edge nodes receive their ḡ values from the parent edge nodes by
interpolation.

8.1.5 Modified preconditioned conjugate-gradient al-

gorithm

It is important to modify the well known PCG algorithm in order to solve
(8.11) in the nonconforming case. The modifications stem from the require-
ment that the iteration residuals r and the search directions w correspond

60

to functions ~r ≡ ~φtr and ~w ≡ ~φtw belonging to H1(D)d. The CG algorithm
searches the global d.o.f. space for the solution to the linear equation. So
that we may continue to use the local matrix forms, however, we must also
mask off all Dirichlet nodes (if any exist), which are not solved for. The
Σ matrix (8.11) masks off these nodes in such a way that the new search
direction ~w ∈ H1(D)d. Additionally, in all cases in the CG iteration where
a quantity ~g must remain in H1(D)d, we explicitly “smooth” it by using the
smoothing operator, S (cf.§8.1.4). Note that it is critical that the inhomo-
geneous boundary term ūb belong to H1(D)d in (8.11); thus, the smoothing
matrix S is applied to ub before H is. However, the non-smoothed boundary
term must be added after the convergence loop in order to complete the solu-
tion. Note also that the final smoothing operation follows the addition of the
boundary condition and therefore cannot be masked; hence the distinction
of the final matrix Sf := ΦAcA

t

cW.

With these considerations we present in Table 8.1 the PCG algorithm for the
assembled local problem (8.11) modified from the conforming-elements case,
here for nonconforming elements. Preconditioning is handled by the matrix
P

−1. GASpAR includes block- and point-Jacobi preconditioners. For the
test problems presented in §8.2, a point Jacobi preconditioner has proven to
be adequate. In general, the preconditioned quantity must be smoothed, as
indicated in Table 8.1.

8.1.6 Adaptive mesh formulation

Element-mesh hierarchical configuration

We now employ nonconforming connectivity to carry out dynamic adaptivity.
Recall that the global domain D is initially covered (Table C.1) by a set
of disjoint (non-overlapping) elements Ek. Each of these initial elements
becomes a tree root element, identified by a unique root key kr for that tree.
At each level ` ∈ {`min, · · · `max}, an element data structure provides both its
own key k and its root key kr. For any level `, the range of 2d` valid element
keys will be k ∈ [2d`kr, 2

d`(kr + 1) − 1] because the refinement is isotropic
(that is, it splits an element at the midpoints of all its edges to produce its
2d child elements). Conversely, we obtain the level index from the element

61

key using
` = blog2d(k/kr)c. (8.13)

In order to ensure all keys are unique, the first kr := 1 and the next is k′
r :=

2d`max(kr + 1), and so on.

After elements Ek are identified (“tagged”) for refinement or coarsening at
level `, three steps are involved in performing DARe: (1) performing refine-
ment by adding a new level of 2d child elements E2dk, · · ·E2d(k+1)−1 at level
`+1 to replace each Ek, or else coarsening 2d existing children Ek, · · ·Ek+2d−1

into a new parent Ebk/2dc; (2) building data structures for all element bound-
aries, which hold data representing global d.o.f. and accept gathers (Atu

segments) or perform scatters (Aug segments); and (3) determining neigh-
bor lists for data exchange. Neighbor lists consist of records (structures)
that each contain the computer processor id, element key k, root key kr and
boundary id s ∈

{

0, · · ·2d − 1
}

of each neighbor element that adjoins every
interface. In refining or coarsening, the field values for each child (parent)
elements are interpolated from the parent (child) fields. For simplicity, the
interior of each element boundary (i.e., excluding the vertices) is restricted
to an interface between one coarse and at most 2d−1 refined neighbors. Thus,
at most one refinement-level difference will exist across the interior of an
interface between neighboring elements.

In GASpAR, the data structures that represent global d.o.f. at the inter-
element interfaces are referred to as “mortars.” These structures are not to
be confused with the mortars used in MEM; however, they serve as templates
for that more general method. Recalling Fig. 8.1b as a paradigm, in gen-
eral the mortars contain node locations and the basis functions of the parent
element boundary (edge in 2D, or face in 3D). The mortar structures repre-
sent the same field information for the parent and child edges; their nodes
coincide with the nodes of the parent edge, and they interpolate global d.o.f.
data to the child edges, as described above. The mortar data structures are
determined by communicating with all neighbors to determine which inter-
faces are nonconforming. This communication uses a voxel database (VDB)
[17]. A VDB consists of records containing geometric point locations, a com-
ponent id that tells what part of the element Ek (in 2D, edge ∂Ek,s, vertex
∈ ∂2Ek,s, etc.) the point represents, an id of the element that contains the
point, the root id of that element, and some auxiliary data. Two VDBs
are constructed: one consists of all element vertices, and one consists of all

62

element edge midpoints. With these two VDBs, we are able to determine
whether a relationship between neighbor edges is conforming and also deter-
mine the geometrical extent of the mortar. The VDB approach can also be
used for general deformed geometries in two and three dimensions, as long
as adjacent elements share well-defined common node points.

The algorithm classes that carry out DARe operate only on the element and
field lists. The SEM solvers adjust themselves automatically to accommodate
the dynamic addition and removal of elements that occurs as a result of
DARe.

Refinement and coarsening rules

The refinement and coarsening method takes as input only the local indexes
of the elements to be refined and coarsened. Before refinement or coarsening
is done, the tagged elements are checked for compliance with several rules.
For refinement, the rules are: (R1) the refinement level must not exceed
a specified limit `max; and (R2) at most one level may separate neighbor
elements. These rules must be followed also for interfaces at periodic bound-
aries. Rule R2 is enforced by tagging a coarse element for refinement too, if it
has an already refined neighbor tagged for further refinement. Enforcement
of R1 and R2 is most easily effected by building a global list of keys of all
elements tagged for refinement, and comparing the local refinement lists with
it.

We may not coarsen an element under any of the conditions: (C1) it is a
root; (C2) any of its 2d − 1 siblings are not tagged for coarsening; (C3) it
appears in a refinement list; or (C4) rule R2 would be violated. To enforce
C4, we use a query-list, i.e., a global list of each element key k, its parent key
bk/2dc, and its level ` (8.13). The query-list contains keys gathered from all
processors. The following procedure is then used.

1. Build a global “refinement” query-list (RQL) from the keys in the local
refinement list.

2. Find level limits `max and `min from the coarsen list.

3. Reorder the current local coarsen list from `max down to `min.

63

4. Looping from ` = `max down to `min: build a global “coarsen” query-
list (CQL) from the keys in the current local coarsen list; and for all
keys k in the local coarsen list at the current `, if any refined neighbor
is in the CQL and no refined neighbors are in the the RQL, then k is
retained in the current coarsen list; otherwise it is deleted.

5. Check finally that all elements in the local coarsen list have all their sib-
lings also tagged for coarsening. The sibling elements of k are identified
by having the same parent key bk/2dc.

Note that the local refinement lists are checked and possibly modified before
checking and modifying the coarsen lists.

Communicating boundary data

The mortar data structures contain all the data to be communicated between
elements during each application of the DSS Σ (8.11) or smoothing opera-
tion S. Communication of element-boundary data requires network com-
munication on parallel computers. This involves initialization and operation
steps. Initialization establishes element-processor connectivity by bin-sorting
global node indexes and having each processor examine the nodes from one
bin, to determine element-neighbor lists. This method has been suggested
in [9, §8.5.2] but to our knowledge has never before been implemented. All
coinciding mortar-structure nodes ~xg,i = ~xg,i′ are uniquely labeled by their
Morton index M(~xg,i), computed by digitizing the d coordinates and partially
interleaving the B bits along each coordinate µ. So for aµ := min~x∈D xµ:

Mµ(~x) := bx
µ − aµ

∆x
+ 1

2
c ⇒ M(~x) :=

d
∑

µ=1

2(µ−1)BMµ(~x) ∈
{

0, · · · 2dB − 1
}

,

where ∆x is chosen so that Mµ(~x) ∈
{

0, · · ·2B − 1
}

∀~x. For P processors,
a collection of P bins Bl, l ∈ {0, · · ·P − 1}, is generated that partitions
the dynamic range (over all processors) of the Morton indexes. Processor
l partitions its list of indexes into the bins, sending the contents of Bl′ to
processor l′, where the information is combined with those from other pro-
cessors and then sent back to processor l. After this initialization step, every
processor is informed of which other processors share which mortar nodes.

64

The operation step communicates the data at any node point ~xg,i with all
other processors that share it. These data are extracted from the containing
element by using the pointer indirection provided by M(~xg,i). The field val-
ues at ~xg,i are summed during DSS or smoothing and reassigned to ~xg,i also
by indirection. To reduce communication, shared ~xg,i residing on the same
processor are summed before being transmitted to the other processors that
share that ~xg,i. At the end of the operation step, the field values at multiply-
represented global nodes are identical. This gather-scatter procedure ensures
that the DSS output are locally available immediately after communication.
One benefit of this gather-scatter method is that it allows communication
to be separated from the geometry, because Morton indexes are essentially
unstructured lists of local data locations. However, a future upgrade of GAS-
pAR will use VDBs to obviate the need for the bin-sort initialization step,
which requires information already provided in the VDBs.

Error estimators

Elements are tagged for DARe by the use of an a posteriori criterion. The
spectral estimator criterion, modified from [18, 27], uses local Legendre spec-
tra to estimate the quadrature and truncation errors and the spectral conver-
gence rate in each element Ēk = ~ϑk([−1, 1]d). First, the mapping uµ ◦ ~ϑk(~ξ)

of each solution component uµ(~x) is transformed to spectral coefficients uµ,µ′

j

along a 1D line in coordinate ξµ′

by [9, (B.3.13)], averaging over all the

ξµ′′ 6=µ′

. The convergence rates λµ,µ′

are fit using |uµ,µ′

j | ≈ Cµ,µ′

exp−λµ,µ′

j [18,
(18)] with j ∈ {p− 3, · · ·p}, except that instead of “equivalent” 1D coeffi-
cients [18, (17)], we combine fits using λµ :=mind

µ′=1 λµ,µ′

. The solution error
εµ
est is estimated using [18, (19) l.h.s.], except again instead of “equivalent”

1D coefficients, we estimate the first term of [18, (19)] by
∑d

µ′=1(u
µ,µ′

p)2 and

the second term by (
∏d

µ′=1(C
µ,µ′

)2
∫∞

p+1
dj exp−2λµ,µ′

j)1/d. Thus, Ēk is refined,

if for some µ, εµ
est is above a threshold value εt or if λµ is below another

threshold λt. For coarsening, for all µ, all 2d sibling elements must have
their εµ

ests below some value γcεt < εt, computed by multiplying by a “coars-
ening multiplier” γc. This prevents “blinking,” i.e., refined elements being
immediately coarsened again. In conjunction with the spectral estimator,
we can often obtain better overall accuracy convergence by thresholding on
the Ēk-maximum second derivative magnitude in any coordinate and taking

65

a logical OR of that criterion with the spectral estimator. While the high
polynomial degrees will help the spectral estimator, given the variety of our
future applications, new refinement criteria may be more effective. The in-
vestigation of refinement criteria appropriate, e.g., for intermittent features
is a major outstanding problem in adaptive numerical solution of PDEs that
we will consider in future work.

8.2 Results for adaptive (non)linear advection-

diffusion simulation

Our test problems examine various aspects of (8.1). The primary goal is to
investigate the solution temporal and spatial convergence when adaption is
used. Thus we have selected problems with analytic solutions, so that errors
may be determined exactly, instead of only by comparison e.g., to a uniformly
highly refined control solution. Tests begin with the simplest aspect of (8.1)
and progress through more difficult problems until the behavior of the full
2D nonlinear, multi-component version of (8.1) is considered. We do not use
filtering for any of these test problems.

For each test the BDF3 and Ext3 schemes are used for the time-derivative and
the advection terms in (8.7), respectively, unless stated otherwise. This re-
quires that all the required time levels tm−1 be initialized, m ∈ {1, · · ·max(Mbdf , Mext)}.
A logical OR of the spectral and second-derivative error estimators or just the
second-derivative estimator is used for the adaption criterion. The spectral
estimator is normalized by the initial-condition norm ||ū0||∞, and the second
derivative is normalized by ||ū0||∞/L2, where L is the longest global domain
length. The threshold λt is always set at 1 when used.

Except where we compare with published results, the viscosities are some-
what arbitrary. We reiterate that one of our motivations in considering (8.1)
is that it exemplifies many of the characteristics of the Navier-Stokes equa-
tions of interest in simulating turbulence, including the dependence on ν via
Re. However, we note that a recent paper [32] concludes that the MEM
and the interpolation-based connectivity for nonconforming elements may
manifest inconsistencies that affect convergence, which a small viscosity can
prevent.

66

For the purposes of our tests, we perform adaption after every 10 timesteps
except if stated otherwise. In practice, this is not optimal as the adaptivity
overhead can overtake the computational savings achieved by reducing the
required number of d.o.f.. In general, it is more meaningful and efficient to
adapt at a fraction of a fiducial timescale, say an eddy turnover time. The
refinement criteria are applied to each component of (8.1) that is solved for.

In order to compare an adaptive solution, we use an `-control grid. This is a
grid that uniformly covers the domain with elements at the finest resolution
`max = `. For all spatial convergence tests that have control solutions, we will
also provide a single processor speed-up factor representative of the adaptive
solutions, by giving the ratio Tcontrol/Tadaptive of the total control and adaptive
cpu run times. Naturally, this factor is only to be used for reference since the
speed-up will, in general, depend not only on the solution and its refinement
criteria and thresholds, but also the adaption interval, and expansion degree,
p.

8.2.1 Adaptive heat-equation solution results

For the linear case ~c = ~c(t) the fundamental solution of (8.1) is a Gaussian
d-periodized in D = [0, 1]d:

uµ
a(~x, t) :=

σ(0)d

σ(t)d

∞
∑

ı1,···ıd=−∞

exp−
(

~x− ~x 0 +~ı−
∫ t

0
~c(t′)dt′

σ(t)

)2

(8.14)

for t > −σ(0)2/4ν (uµ
a(~x, t) := 0 otherwise), where σ(t) :=

√

σ(0)2 + 4νt,

σ(0) =
√

2/20 is the initial e-folding width and ~x 0 =
∑d

µ=1 ~e µ/2 is the
initial peak location. To compute (8.14), we truncate summands of value
less than 10−18 of the partial sum. The simplest version of (8.1) is the heat
equation, where ~c = ~0. The goal here is to determine the temporal and
spatial convergence when there is no advection. The initial condition (8.3)
is computed on K = 4× 4 elements from (8.14) at t = 0 and d = 2, and the
mesh is refined until refinement level ≤ `max. Both the spectral estimator
with threshold εt = 10−3 and second-derivative estimator with threshold of
0.25 were used. The coarsening multipliers (to prevent blinking) for each
were set to γc = 0.5 and 0.25, respectively. A BDF2 scheme is used here for
the time derivative.

67

Temporal convergence of the adaptive heat-equation solution

We examine time convergence by advancing to tf = 0.05 for various constant
∆t. From (8.14) curves of relative L2 error ε = ||ūn − ūa||2/||ū0

a ||2 vs ∆t are
plotted for several maximum-refinement levels `max and for degrees p, in Fig.
8.2a-d, The control grid here consists of 16×16 elements. The BDF2 and Ext2
are globally second-order schemes, so if the solution is well resolved spatially,
we expect to find a slope of ≈ 2 in a log-log plot of error vs ∆t. Indeed this
is seen in Fig. 8.2a-d; each panel shows a sequence of three curves for the
refinement levels `max ∈ {0, · · · 2}, where `max = 0 implies that no refinement
is done. For the curves that are spatially resolved, the error is linear with
slope 2.04. Even at low p, the solution is well resolved if DARe is used,
even at `max = 1. If the refinement thresholds εt where increased slightly,
we would see a larger reduction in the the number of d.o.f. required, but our
accuracy would decrease, requiring a higher `max before accuracy (at small
∆t) is restored. As p increases, there is less need for DARe, as is expected
due to the smoothness of the solution.

Spatial convergence of the adaptive heat-equation solution

We now consider the effects of polynomial degree p. The maximum refine-
ment is fixed at `max = 2. At time tn a dynamic Courant-limited timestep

∆tn ≤ Co

/

max
~∈{1,···p}d;k∈{1,···Kn};µ,µ′∈{1,···d}

(

4ν

(∆n
~,k)

2
+
|uµ′n

~−~e µ,k + uµ′n
~,k |

2∆n
~,k

)

(8.15)
is used with a fixed Courant number Co = 1.0, where ∆n

~,k := minµ∈{1,···d}

|ϑµn
k (~ξ~−~e µ)− ϑµn

k (~ξ~)| (Table C.1). We can set Co to a reasonably high value
because a semi-implicit scheme is used. The solution is advanced to tf = 0.5,
enough to observe the solution coarsening as it decays. Only the control
runs use the variable timestep; the adaptive runs use as a fixed timestep the
Courant-limited value of the corresponding control case at t = tf . The initial
mesh is the same as §8.2.1.

Figure 8.3a shows the exponential spatial convergence characteristic of all our
tests. We expect from (C.3) that an infinitely smooth solution will spectrally

68

lmax=0 lmax=2lmax=1 lmax=3 l−control

−3.5 −3 −2.5 −2−5
−4
−3
−2
−1

p=5

−3.5 −3 −2.5 −2

p=8

−3.5 −3 −2.5 −2

p=11

−3.5 −3 −2.5 −2

p=14

−3.5 −3 −2.5 −2−5
−4
−3
−2
−1

p=5

−3.5 −3 −2.5 −2

p=8

−3.5 −3 −2.5 −2

p=11

−3.5 −3 −2.5 −2

p=14

−3.5 −3 −2.5 −2−5
−4
−3
−2
−1

p=5

−3.5 −3 −2.5 −2

p=8

−3.5 −3 −2.5 −2

p=11

−3.5 −3 −2.5 −2

p=14

−3.5 −3 −2.5 −2−5
−4
−3
−2
−1

p=5

−3.5 −3 −2.5 −2

p=8

−3.5 −3 −2.5 −2

p=11

−3.5 −3 −2.5 −2

p=14

−12
−10

−8
−6
−4
−2
0

p=5 p=8

−5 −4.5 −4 −3.5

p=11

−5 −4.5 −4 −3.5

p=14

−5 −4.5 −4 −3.5−5 −4.5 −4 −3.5
(e) (f)

(g) (h)

−12
−10

−8
−6
−4
−2
0

p=5 p=8

−5 −4.5 −4 −3.5

p=11

−5 −4.5 −4 −3.5

p=14

−5 −4.5 −4 −3.5−5 −4.5 −4 −3.5
(e) (f)

(g) (h)

−12
−10

−8
−6
−4
−2
0

p=5 p=8

−5 −4.5 −4 −3.5

p=11

−5 −4.5 −4 −3.5

p=14

−5 −4.5 −4 −3.5−5 −4.5 −4 −3.5
(e) (f)

(g) (h)

−12
−10

−8
−6
−4
−2
0

p=5 p=8

−5 −4.5 −4 −3.5

p=11

−5 −4.5 −4 −3.5

p=14

−5 −4.5 −4 −3.5−5 −4.5 −4 −3.5
(e) (f)

(g) (h)

Figure 8.2: Plots of normalized error log10(||ūn − ūa||2/||ū0
a ||2) vs log10 ∆t

for (a-d) the heat equation and (e-h) advection-dominated flow (8.1), for
different polynomial degrees p as labeled. Each upper panel shows curves
for up to three maximum refinement levels `max indicated in the legend; each
lower panel shows four refinement levels. For the heat equation, The 2-control
solutions (thin curves) overlie the `max ≥ 1 adaptive curves. As p increases,
the curves converge.

69

2 3 4 5 6 7 8 9 10

10

(a)

−9

10−7

10−5

10−3

4 5 6 7 8 9 10 11 1210

(b)

−8

10−7

10−6

10−5

10−4

Figure 8.3: Semilog plots of ||ūn − ūa||2/||ū0
a ||2 vs p for (a) the diffusion,

(b) advection-dominated flow. Square and diamond markers indicate the
adaptive and `max-control runs, respectively. For diffusion, `max = 2, and for
the advection-dominated cases, `max = 3.

converge along a straight-line plot of log10(||ūn− ūa||2/||ū0
a ||2) vs p. For lower

p, the 2-control solutions are better than the adaptive runs, but the curves
merge quickly, as we would expect for such a smooth problem. The adaptive
curves show some slight concavity for this problem. The low-p error source
is likely the elliptic nature of (8.10), so that coarse elements propagate their
error throughout the mesh. Figure 8.4b shows that even for varying K (Fig.
8.4a), the error over time behaves monotonically, agreeing very closely with
the control profile. We find that the adaptive cases for all but p = 2 case run
significantly faster (Tcontrol/Tadaptive ≈ 3) than the controls for this problem.

8.2.2 Adaptive linear-advection simulation results

Next we consider the linear advection-dominated equation (8.1) with d = 2,
ν = 10−4 and ~c = ~e 1. This tests the ability of the code to follow a localized
translating distribution. The initial state (8.3) is given by (8.14) at t = 0.
The spectral estimator in this problem is turned off. The second-derivative
criterion is set to εt = 1 with a coarsening multiplier of γc = 0.5.

70

64
96

128
160
192

0 0.1 0.2 0.3 0.4 0.5−9

−8

−7

−6

(a)

(b)

270

280

290

300

0 0.04 0.08 0.12 0.16 0.2

−9

−8

−7
−6

(c)

(d)

64
96

128
160
192

0 0.1 0.2 0.3 0.4 0.5−9

−8

−7

−6

(a)

(b)

270

280

290

300

0 0.04 0.08 0.12 0.16 0.2

−9

−8

−7
−6

(c)

(d)

Figure 8.4: For the 2D adaptive (a-b) p = 6 heat-equation, and (c-d) p = 8
linear advection tests, time series of (a,c) number K of elements, and (b,d)
log10(||ūn− ūa||2/||ū0

a ||2). The errors for the adaptive and control meshes lie
on top of one another.

Temporal convergence for adaptive linear advection

Temporal convergence is tested as in §8.2.1, except that only the second-
derivative criterion is used. The final tf = 0.06, and we begin with a K = 4×4
element mesh. We present the results in 8.2e-h. The spatially resolved curves
in each plot have an average slope of 2.95. Even at high degree p, the error is
∆t-independent for the unrefined mesh. For lower p, the error decays at the
order of the time-stepping method only if there are several refinement levels,
indicating that the solution is well resolved spatially only at higher `max.
Thus, in order to achieve a temporal error O(∆t3), refinement is necessary.

Figure 8.2e-h also shows 3-control runs corresponding to the adaptive so-
lutions, indicated by thin curves that all overlie the `max = 3 curves. As
p increases, less refinement is required to achieve the same accuracy that
3-control does.

Spatial convergence for adaptive linear advection

We turn to the effects of polynomial degree p on the solution error. The
maximum refinement level is fixed to `max = 3. Here, a Courant-limited
timestep (8.15) is again used with Co = 0.2. The solution is advanced to

71

tf = 0.2, enough to see several DARe cycles occur (Fig. 8.4c). The initial
mesh is the same as in §8.2.2. Spectral error decay can be seen in Fig. 8.3b,
which also shows the 3-control solutions. The adaptive solution error decays
nearly identically as does the 3-control, suggesting again that interpolation
introduces no deleterious effects for this problem.

Figure 8.4c-d shows typical time series of the element count K and the error.
Clearly, adaptivity does not alter the monotonic error behavior. The 3-
control grid (K = 32 × 32 elements) error for p = 8 is plotted in Fig. 8.4d
and is nearly identical to the adaptive error. Adaptivity clearly provides
a significant savings in the number of d.o.f. required for a given accuracy.
Indeed, the single processor time savings is significant too; we find that
(Tcontrol/Tadaptive ≈ 10 for most p.

Note that when we set ν = 0 for this problem, we obtain energy conservation
to about six digits for the `max = 3 adaptive case, and to about seven digits
in the `max = 3 control run, up to tf = L/|~c| = 1.

8.2.3 2D Burgers equation

We now examine the nonlinear (~c = ū) version of (8.1). The goal is to
investigate the solution errors as the mesh resolves and tracks the stationary
or propagating fronts generated and sustained by the nonlinear coupling of
the system. We introduce a class of exact 2D solutions as follows. Note
that any d solutions qµ(y, t) to the 1D Burgers equation can be cast into d
dimensions by substituting

ū(~x, t) =
d
∑

µ=1

~κµqµ(~κµ
· ~x,~κµ

· ~κµt), where ~κµ
· ~κµ′

:= ~κµ
· ~κµδµ,µ′

,

(8.16)
into (8.1) [14]. If qµ has period Y µ w.r.t. y, then taking integer 2κµ,µ′

/Y µ

makes periodic boundary conditions for ~x ∈ [−1, 1]d appropriate. An initial
condition (8.3) for a kind of straight ~κµ-perpendicular front is derived from

qµ(y, 0) :=− sin(πy) + ûµ
2 sin(2πy), (8.17)

The first problem is the classical Burgers stationary front, which is compared
with and without adaptivity to previous results. The second problem will

72

consider the vector nature of (8.1) by simulating the collision of two op-
positely translating oblique fronts. The third case is a curved front, i.e., a
propagating radial N-wave.

Stationary Burgers front

The stationary Burgers front is the classical solution to (8.1), exhibiting a
straight front developing across the x1 direction. We compare with analytic
values the maximum derivative magnitude |∂x1u1|max and the time tmax at
which the maximum occurs. To compare with the literature [2], we set ν =
0.01/π, ûµ

2 = 0 and ~κµ = ~e 1δµ,1. The problem is initialized with K = 4 × 1
grid of a specified degree p. A BDF3/Ext3 scheme is used for the time-
derivative and advective terms, respectively. We initialize from (8.17) only
at t = t0, and integrate using a BDFM/ExtM scheme to provide values at tM

(M = 1, 2). A nonadaptive and an adaptive case with maximum refinement
`max = 3 are considered. In the nonadaptive case, the element edges lie along
x1 = 0,±0.05,±1, whereas in the adaptive case, the elements are initially
uniform. The second-derivative error criterion is used in this problem applied
to ū, and the threshold and coarsening multiplier are εt = 1 and γc = 0.5,
respectively.

Table 8.2a presents the nonadaptive results from GASpAR and from [27].
Besides the comparison in Tables 8.2a and 8.2b, we obtained analytic solu-
tions using (8.16) combined with the 1D formula [38, (4.10)] computed using
Gauss-Hermite quadrature, and verified |∂x1u1|max to seven digits against the
reported value [2]. Thus, we have also verified that the L2 accuracy of the
solution is consistent with the derivative accuracy implied by Tables 8.2a and
8.2b. We note that the p = 5 case is comparatively poor [cf. 27], possibly
due to differences between the basis functions in the two methods [2], but
our nonadaptive errors in tmax for our case are consistently better, while for
p > 5 the |∂x1u1|max errors are comparable [cf. 27].

Table 8.2b shows the results from the adaptive case and the reference and
control solutions, where reference refers to a solution on a nonadaptive grid
with K fixed as at the adaptive solution at t = tmax. Thus, it offers a
solution computed with roughly as many d.o.f. as the adaptive solution, and
hence requiring about the same computational effort, disregarding adaptivity

73

Table 8.2: For the stationary Burgers front: (a) nonadaptive results; (b)
adaptive, reference, and control results. The analytic solution [2] is denoted
by p =∞.

(a) Mavriplis [27] GASpAR
p tmax |∂xu|max tmax |∂x1u1|max
5 0.53745 167.227 0.5320 228.38977
9 0.50611 154.019 0.51074 148.04258
13 0.51103 151.496 0.51072 151.69874
17 0.51071 152.076 0.51045 152.09104
21 0.51023 152.004 0.51047 151.99624
∞ 0.51047 152.00516

(b) adaptive reference control
p tmax |∂x1u1|max tmax |∂x1u1|max tmax |∂x1u1|max
5 0.52679 224.36164 — — 0.52674 224.37214
9 0.51095 153.39634 0.52635 227.53596 0.51095 153.39633
13 0.51030 150.03130 0.51219 181.02024 0.51030 150.03130
17 0.51048 152.25110 0.51082 149.57372 0.51048 152.25110
21 0.51047 152.00556 0.51021 147.22940 0.51047 152.00565
∞ 0.51047 152.00516

overhead. Clearly, resolving the front is very challenging as evidenced by
the reference solution for p = 5 actually diverging, and good solutions not
being obtained until p > 13. The control solutions are all nearly identical
to the adaptive ones, suggesting that our refinement criteria enable DARe
to capture the formation of the front accurately, at a significantly reduced
number of d.o.f.. Indeed, on one processor, the computational times for
the DARe cases are also reduced by a factor of about 7 compared with the
control runs. Keeping in mind that on a single processor, no load balancing
is required, we do not expect this level of efficiency for most turbulence
problems. However, for the case where we are resolving largely isolated
structures in an otherwise noisy background, we expect to see significant
reductions in overall computational costs using DARe.

N-wave problem

The radial N-wave solution combines a d-dimensional Cole-Hopf transforma-
tion of (8.1) and a heat-eq. solution [generalizing 38, (4.6) & (4.40)]

ū = −2ν ~∇ ln χ ←− χ(~x, t) = 1 +
a

td/2
exp−(~x− ~x 0)2

4νt
, (8.18)

74

The N-wave emanates from ~x 0 = (~e 1 + ~e 2)/2. For this test, we initialize
at t0 = 5 × 10−2 and set ν = 5 × 10−3 and a = 104. Dirichlet boundary
conditions (8.2) on D = [0, 1]2 are imposed at each time by evaluating (8.18)
on ∂D. The initial grid has K = 4 × 4 elements, and we consider only the
adaptive case with `max = 4. The refinement criteria are the same as in
§8.2.2.

Fig. 8.5 presents six snapshots of the u1 component of a typical N-wave sys-
tem numerical solution, and illustrates the refinement patterns characteristic
of all the runs. The solution has reflection symmetries, so for simplicity only
one quadrant is shown. As the semicircular front propagates outward, the
mesh refines to track it; while in the center the velocity components grow
more planar, and the mesh coarsens. The front does not steepen in this
problem, as it does in the planar front problem (§8.2.3); it simply decays as
it propagates outward.

We set p = 14 and advance from t = t0 to tf = 0.11 for various constant
∆t to produce the timestep error-convergence curve in Fig. 8.6a. This time
interval was enough to provide a number of DARe events; nevertheless, the
solution converges with ∆t, at order (slope) 3.01.

To check spatial convergence, the solution is advanced from t = t0 to tf = 0.11
by using variable p and ∆t (8.15) but fixed Co = 0.15. Figure 8.6b shows
the final L2 error vs p. As with the linear advection case, the error behaves
spectrally for a finite time integration.

Colliding front problem

Here we take (8.17) with ûµ
2 = 1

2
δµ,1, an initial condition that develops two

translating, colliding fronts, and use (8.16) to get a 2D bi-periodic vector
solution to the system (8.1). We retain ν = 0.01/π, and to set the fronts
oblique to the axes put ~κµ = (~e 1 + 2~e 2)δµ,1. The mesh initially has K =
4 × 4 elements of degree p = 8. Initialization is as in §8.2.3, except that
we use a BDF2/Ext2 scheme for time integration. The second-derivative
error criterion is used in this test, with threshold and coarsening multiplier
εt = 8 and γc = 0.2, respectively. The maximum refinement is `max =
5. Because the mesh only has to resolve discrete fronts as they develop,

75

0
0.2
0.4
0.6
0.8

Time 1.826825e−01 (file nwave_full_test_nr3_n9.004629 08−Mar−2005 20:32:53)
88 9×9 elements, ν=diag[5.000000e−03 5.000000e−03]

(a)
V1

0
0.2
0.4
0.6
0.8

Time 3.324935e−01 (file nwave_full_test_nr3_n9.009798 08−Mar−2005 23:55:49)
121 9×9 elements, ν=diag[5.000000e−03 5.000000e−03]

(b)

V1

0
0.2
0.4
0.6
0.8

Time 4.822575e−01 (file nwave_full_test_nr3_n9.014899 09−Mar−2005 04:20:44)
139 9×9 elements, ν=diag[5.000000e−03 5.000000e−03]

(c)

V1

0
0.2
0.4
0.6
0.8

Time 6.532768e−01 (file nwave_full_test_nr3_n9.020681 09−Mar−2005 15:29:48)
172 9×9 elements, ν=diag[5.000000e−03 5.000000e−03]

(d)
V1

0
0.2
0.4
0.6
0.8

Time 8.095212e−01 (file nwave_full_test_nr3_n9.025938 09−Mar−2005 21:45:17)
181 9×9 elements, ν=diag[5.000000e−03 5.000000e−03]

(e)

V1

0
0.2
0.4
0.6
0.8

Time 1 (file nwave_full_test_nr3_n9.032325 10−Mar−2005 05:22:53)
190 9×9 elements, ν=diag[5.000000e−03 5.000000e−03]

(f)

V1

Figure 8.5: For the p = 8 adaptive radial N-wave solution of (8.1) with ~c = ū
and ν = 5 × 10−3, initialized by (8.18), surface plots of u1(~x, t), showing
~x ∈ [1

2
, 1]2 and K/4 = 88, 121, 139, 172, 181, 190 as t = 0.18, 0.33, 0.48,

0.65, 0.81, 1.00. Black and yellow curves show nodes and element edges,
respectively.

76

−5 −4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6 −3.4
−10

−9.5
−9

−8.5
−8

−7.5
−7

−6.5
−6

−5.5
−5

(a)

4 5 6 7 8 9 10 11 1210−8

10−7

10−6

10−5

10−4

(b)

Figure 8.6: For the adaptive radial N-wave solution of (8.1) with ~c = ū and
ν = 5× 10−3, initialized by (8.18), plots of log10(||ūn − ūa||2/||ū0

a ||2) vs: (a)
log10 ∆t for p = 14, with slope 3.01; and (b) p.

translate, merge and decay there is clear potential for computational savings
by using adaptivity: simply reducing the number of elements on which to
compute. Here, we wish to illustrate this potential and to verify that the
error in the solution is consistent with the results in §8.2.3. We do not
consider a control run for this problem.

In Fig. 8.7 are presented six snapshots during the evolution of the u1 compo-
nent of the colliding-fronts system, zoomed to one quadrant of the domain.
The mesh refines around each of the oppositely-propagating fronts as they
steepen, merge and begin to decay. The dash-dotted curve of Fig. 8.8 shows
the number K of elements increasing monotonically before and during the
merger, and decreasing, as expected, after the merger is complete at about
t = 0.12. Moreover, Fig. 8.7 shows that DARe occurs only in regions lo-
calized around the steepening or translating fronts. The maximum number
of adaptive elements is maxt K = 3136, while the control solution would re-
quire K = 16384. This is a coverage fraction of about 19%, suggesting that
adaptivity in this problem certainly offers a huge reduction in the required
number of d.o.f..

Figure 8.8 provides the time series for the maximum-magnitude and L2 so-
lution errors (unnormalized) of u1, as well as the relative error of |~κ1

·
~∇u1|.

The solution errors are reasonably well behaved. As expected, there is much

77

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 1.800000e−02 (file bftest_nr5_n9.0000071 01−Sep−2005 19:01:53)
28 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(a)
V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 2.550000e−02 (file bftest_nr5_n9.0000101 01−Sep−2005 19:02:21)
52 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(b)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 4.050000e−02 (file bftest_nr5_n9.0000161 01−Sep−2005 19:04:17)
112 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(c)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 6.050000e−02 (file bftest_nr5_n9.0000241 01−Sep−2005 19:22:37)
352 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(d)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 8.050000e−02 (file bftest_nr5_n9.0000321 01−Sep−2005 21:18:45)
784 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(e)

V1

−1

−0.5

0 −1

−0.5

0

−1.5

−1

−0.5

0

0.5

1

1.5

x2

Time 1.180000e−01 (file bftest_nr5_n9.0000471 01−Sep−2005 23:59:26)
481 9×9 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(f)

V1

Figure 8.7: For the p = 8 adaptive colliding front solution of (8.1) with ~c = ū
and ν = 10−2/π, initialized by (8.16) and (8.17) with ~κµ = (~e 1 + 2~e 2)δµ,1

and ûµ
2 = 1

2
δµ,1, surface plots of u1, showing ~x ∈ [−1, 0]2 and K/4 = 28, 52,

112, 352, 784, 481 at the time abscissas noted in Fig. 8.8. Black and yellow
curves show nodes and element edges, respectively.

78

0.02 0.03 0.04 0.06 0.08 0.12 0.20

10−5

10−4

10−3

10−2

10−1

100

time t

relative error in |kµ∂
µ
u1|

K/maxtK

L2 error
max abs. error

Figure 8.8: For the p = 8 adaptive solution of (8.1) with ~c = ū and ν =
10−2/π, initialized by (8.16) and (8.17) with ~κµ = (~e 1 + 2~e 2)δµ,1 and ûµ

2 =
1
2
δµ,1, time series of fraction K/ maxt K of elements (dash-dotted curve) and

magnitude of relative maximum error in |~κ1
·
~∇u1| (dot markers) vs time.

Also shown are the maximum-absolute (solid curve) and L2 (dashed curve)
errors for u1. The abscissa is marked at the six times of Fig. 8.7.

79

0

0.5

1

0

0.5

1

−2

0

2

x2

Time 1.005000e−01 (file bftest_nr5_n7.0000401 13−Oct−2005 00:24:13)
1018 7×7 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(a)
V1

0

0.5

1

0

0.5

1

−0.05

0

0.05

x2

Time 1.005000e−01 (file bftest_nr5_n7.0000401 13−Oct−2005 00:24:13)
1018 7×7 elements, ν=diag[3.183099e−03 3.183099e−03]

x1

(b)

V1

Figure 8.9: For the p = 6 adaptive double colliding fronts solution of (8.1)
with ~c = ū and ν = 10−2/π, initialized by (8.16) and (8.17) with ~κ1 =
~e 1 + 2~e 2, ~κ2 = ~e 2 − 2~e 1, û1

2 = 1
2

and û2
2 = 0, surface plots of (a) u1

n and
(b) (u1

n − u1
a)/||u1

n||∞, showing ~x ∈ [0, 1]2 and K/4 = 1018 at t = 0.10. For
clarity, the node lines are not shown, but the element boundaries are now
black.

more variation of the derivative error. The analytic values for |∂x1u1|max and
the time, tmax at which this maximum occurs are 213 and 0.1280, respec-
tively. From our results, we find that |∂x1u1|max = 222 and tmax = 0.1283,
which is entirely consistent with the stationary results presented in Table
8.2b.

Finally, Fig. 8.9 shows a snapshot solution and relative error field of an even
more challenging problem, namely the same two colliding fronts orthogonally
crossed by a stationary front. Also, to better exercise h-refinement, the
degree was reduced to p = 6 from p = 8 in the previous test. The reduction in
overall accuracy is consistent with the p-convergence results in Fig. 8.6b. The
relative L2 error is ||u1

n−u1
a||2/||u1

n||2 = 5.8× 10−3. The element distribution
in Fig. 8.9b shows that the error estimation coincides well with the actual
point-wise error field.

80

Appendix A

Sample GASpAR parameter
file

This appendix contains a complete list of parameters currently allowed in
a start-up parameter file. The keywords on the left within a block may be
modified easily by changing the ParamReader configuration in the Cmd-
FileParse() method in the gaspar t.cpp module.

GASpAR_MAIN

{

//___

// General time and output control

//___

Do_Restart : 0; //0->no restart; 1->restart

Restart_Using_File_Name : gaspar.dmp; // Used if Do_Restart = 1

Output_Time_Specification : 0; // 0->Time-based; 1->Cycle-based

Output_Time_Begin : 0.0; // Begin output at this time

Output_Time_End : 20.0 ; // End output at this time (also run termination time)

Output_Time_Delta : 0.1 ; // Output at this time interval

Output_Cycle_Begin : 0; // Begin output at this cycle number

Output_Cycle_End : 13000; // End output, and run, at this cycle number

Output_Cycle_Delta : 100; // Output at this cycle interval

Logging_Cycle_Delta : 10; // Do logging at this cycle interval

Dump_Cycle_Delta : 100; // Create dump files at this cycle interval

AMR_Cycle_Delta : 100; // Perform AMR at this cycle interval

Output_File_Prefix : tst; // Use this as the output file prefix, and tag with cycle no.

Use_Fixed_Timestep : 1 ; // Use fixed timestep?

Timestep : 5e-4; // Set if Use_Fixed_Timestep = 1;

//___

// Mesh and solver specifications

//___

81

Is_External_Mesh : 1; // Flag indicating external mesh

Mesh_File_Name : mesh.dat; // Mesh data file

Log_File_Name : gaspar.log; // Default log file

Default_Dump_File_Name : gaspar.dmp; // Default dump file name

Scale_TimeStep : 0; // Scale timestep if fixed (0 or 1)?

Courant_Number : 0.2; // Courant number for variable timestep

Use_V-Preconditioner : 1; // Vel. precond. if == 1

Use_P-Preconditioner : 1; // Press. precond. if == 1

V-Preconditioner_Type : 2; // 0=GPC_BLOCKJAC_HELM; 2=GPC_POINTJAC_HELM

Stokes_Solver_Spltting_Type : 0; // 0=SCHUR_DELP; 1=CLASSICAL_UZAWA

Time_Evolution_Scheme : 2; // 0=OIFS; 1=ABBDF; 2=EXBDF; 3=AMFE; 4=RKK

Time_Derivative_Order : 2; // Time derivative order for now

Advection_Order : 2; // AB or EXT order dep. on Time_Evolution_Scheme

Max_Number_of_Velocity_Iterations : 256;

Max_Number_of_Pressure_Iterations : 256;

Velocity_Solver_Tolerance : 1.0e-15;

Pressure_Tolerance : 1.0e-15;

//___

// AMR a-posteriori check types, tolerances

//___

Do_Spectral_Check_AP : 0; // Use spectral error method

Do_1Derivative_Check_AP : 0; // Use 1-deriv. in x, y, or z

Do_2Derivative_Check_AP : 1; // Use 2-deriv in x, y, z

a-Posteriori_Tolerance : 1.0e-2; // Refinement tolerance

a-Posteriori_ToleranceMult : 1.0e-3 ;// Multiplies tol to get coarsening tol.

Decay_Rate_Tolerance : 1.0; // Decay rate tolerance

Num_Spectral_Fit_Points : 4 ; // Number spectral fit points

a-Posteriori_ToleranceD1 : 0.5; // Refine tolerance on 1st derivative

a-Posteriori_ToleranceMultD1 : 0.5 ; // Multiplies 1nd deriv. tol to get coarsening tolerance

a-Posteriori_ToleranceD2 : 1.0; // Refine tolerance on 2nd derivative

a-Posteriori_ToleranceMultD2 : 0.5 ; // Multiplies 2nd deriv. tol to get coarsening tolerance

}

GASpAR_AUX

{

1-Viscosity : 1.0e-4; // viscosity in the x-direction

2-Viscosity : 1.0e-4; // viscosity in the y-direction

Density : 1.0; // Scalar density

User_Parameter_File_Name : gaspar.user; // Specify user parameter file

User_Parameter_Block_File_Name : UserBlk; // User parameter block w/in user parameter file

}

82

Appendix B

Preprocessor definitions

Presented here is a complete list of preprocessor definitions (set using #define
directives).

BURGERS : If defined, compiles code for Burger’s equation.
NS : If defined, compiles code for Navier Stokes equation.
LINUX : Compiles code specific to Linux

operating system.
AIX : Compiles code specific to the AIX

operating system.
INT32 : Compiles code specific to a 32-bit platform.
INT64 : Compiles code specific to a 64-bit platform.

IS2D : Compiles code required for a 2d run.
IS3D : Compiles code required for a 3d run.
MPI GENERIC DEFAULT : If defined, compiles using MPI

library commands.
G MPI1 : If defined, compiles using MPI-1 functions.

There are few of these.
MPI IO DEFAULT : If defined, compiles using MPI IO

library commands.

83

Appendix C

Spectral-element formalism

In this appendix we summarize results from the SEM literature, and our
notation. Table C.1 shows the hierarchy of basic formulas progressing from
one 1D element, through K1 1D elements, to K d-dimensional elements. Any
dependent variable u = u(ξ) may be approximated by its projection Ppu on
the space Vp of polynomials of degree p, using u-values on any p + 1 distinct
nodal points ξj:

u = Ppu + Epu ≈ Ppu :=

p
∑

j=0

u(ξj)φj, (C.1)

where Epu is the point wise error and φj(ξ) :=
∏

j′ 6=j(ξ−ξj′)/(ξj−ξj′) denotes
the Lagrange interpolating polynomials. Taking ξj and wj from Table C.1
implies the quadrature

〈u〉1 :=

∫ 1

−1

u(ξ)dξ =

p
∑

j=0

wju(ξj) +Rpu(ξ′), (C.2)

where Rp := −22p+1 p3(p+1)(p−1)!4

(2p+1)(2p)!3
(d/dξ)2p is the residual operator [36] and

ξ′ ∈]−1, 1[. Then the mean-square error is bounded as

〈(Epu)2〉1 ∝ p1−2Q

Q
∑

q=0

〈u(q)2〉1 (C.3)

84

Table C.1: Hierarchy of spectral-element formulas, where Lj is the standard

Legendre polynomial of degree j and norm (j + 1
2
)−

1

2 , f ◦ g(x) :=f(g(x)) and

1S(x) :=
{

1 (x∈S)
0 (else)

.

Domain: ξ ∈ [−1, 1];

x ∈ [−1, 1] =
⋃K1

k=1 Ē1
k, where]xk−1, xk[≡ E1

k := ϑk(]−1, 1[) has length
h1

k := xk − xk−1 > 0 =⇒ E1
k

⋂

E1
k′ = ∅ if k 6= k′;

~x ∈ D̄ =
⋃K

k=1 Ēk, where Ek := ~ϑk(]−1, 1[d) has diameter
hk := maxµ max~x,~x′∈Ēk

|xµ − x′µ| and Ek

⋂

Ek′ = ∅ if k 6= k′.
Nodes: ξj := (j + 1)th least root of (1− ξ2) d

dξ
Lp;

xj,k := ϑk(ξj), where ϑk(ξ) := xk−1 + 1
2
h1

k(1 + ξ), k ∈ {1, · · ·K1};
~x~,k := ~ϑk(~ξ~), where ξµ

~ := ξµ

and ~ϑk(~ξ) is invertible but not necessarily linear.
Weights: wj := 2/p(p + 1)Lp(ξj)

2;
wj,k := | d

dξ
ϑk(ξj)|wj;

w~,k := | det ~∇~ξ
~ϑk(~ξ~)|

∏d
µ=1 wµ.

Basis: φj′(ξ) = wj′
∑p

j=0 Lj(ξj′)Lj(ξ)/
∑p

j′′=0 wj′′Lj(ξj′′)
2 −−−→

ξ→ξj′′

δj,j′′;

φj,k(x) := 1Ē1

k
(x)φj ◦ ϑ−1

k (x) −−−−−→
x→xj′,k′

{

1, xj,k = xj′,k′,
0, otherwise;

φ~,k(~x) := 1Ēk
(~x)φ~ ◦ ~ϑ−1

k (~x) −−−−−→
~x→~x~ ′,k′

{

1, ~x~,k = ~x~ ′,k′,
0, otherwise,

where φ~(~ξ) :=
∏d

µ=1 φµ(ξµ).

85

for any order Q of square-integrable derivative [9, (B.3.59)]. Thus if u is
infinitely smooth then Ppu converges to u spectrally.

Now let [−1, 1] be covered by K1 disjoint 1D elements E1
k as in Table C.1

(noting that nonlinear invertible ϑk may sometimes be preferable). Then u
may be approximated by its projections Pk,pu on the space V

h
1,p of piecewise

polynomials of degree p on the E1
k. That is, (C.1) generalizes to

u =
K1

∑

k=1

(Pk,pu + Ek,pu) , Pk,pu :=

p
∑

j=0

u(xj,k)φj,k, (C.4)

where Ek,pu := Ep(u ◦ ϑk) ◦ ϑ−1
k . Then (C.2) generalizes to

〈u〉1 =

K1

∑

k=1

∫ xk

xk−1

u(x)dx,

∫ xk

xk−1

u(x)dx =

p
∑

j=0

wj,ku(xj,k)+Rk,pu(x′
k), (C.5)

where Rk,pu := (h1
k/2)2p+1Rp(u ◦ ϑk) ◦ ϑ−1

k and x′
k ∈ E1

k.

Generalizing further, assume a d-dimensional problem domain D can be par-
titioned as in Table C.1. Now generalizing (C.4), one may approximate a
field u(~x) by its projections Pk,~p u on the space Vh,~p of piecewise polynomials
of degree pµ in coordinate xµ on the Ek. That is, (C.4) generalizes to

u ≈ Ph,~p u :=

K
∑

k=1

Pk,~p u, Pk,~p u :=
∑

~∈J

u(~x~,k)φ~,k, (C.6)

where J :=
{

~







µ ∈ {0, · · · pµ}

}

. The appropriate approximation of a vector

ū =

d
∑

µ=1

uµ~e µ ≈ Ph,~p ū = ~φtu

uses ~φ with entries ~φµ
~,k := φ~,k~e

µ and u with entries uµ
~,k := uµ(~x~,k), where

~e µ denotes the Cartesian unit vectors. For scalars u (C.5) generalizes to

〈u〉 :=
∫

· · ·
∫

D

u(~x)dd~x =
K
∑

k=1

∫

· · ·
∫

Ek

u(~x)dd~x

≈
K
∑

k=1

∑

~∈J

w~,ku(~x~,k) =: 〈u〉
gl

.

(C.7)

86

Finally, variational formulation depends on the inner product from (C.7):

〈u, v〉 := 〈uv〉 ≈
K
∑

k=1

∑

~∈J

w~,ku(~x~,k)v(~x~,k) =: 〈u, v〉gl (C.8)

for scalars, 〈ū, ~v〉 :=
∑d

µ=1〈uµ, vµ〉 for vectors, 〈~~u,~~v〉 :=
∑d

µ,µ′=1〈uµ,µ′

, vµ,µ′〉
for tensors, and so forth. This implies a norm ||u||2 := 〈u, u〉1/2

gl . The norm
||u||∞ := maxK

k=1 max~∈J |u(~x~,k)| is also used.

Now define the function spaces

U~b :=

{

ū =
d
∑

µ=1

uµ~e µ










uµ ∈ H1(D) ∀µ & ū = ~b on ∂D

}

and H1(D) :=
{

f







f ∈ L2(D) & ∂xµf ∈ L2(D) ∀µ

}

.

Searching the piecewise polynomial subspace Ph,~pU~b (U~b for a solution to
(8.4) leads to (8.5), where

Mµ,µ′

~,~ ′;k := 〈~φµ
~,k,

~φµ′

~ ′,k〉gl = δ~,~ ′δµ,µ′

w~,k, (C.9)

Cµ,µ′

~,~ ′;k := 〈~φµ
~,k, C~φ

µ′

~ ′,k〉gl = δµ,µ′

w~,k~c~,k ·
~∇φ~ ′,k(~x~,k), (C.10)

Lµ,µ′

~,~ ′;k := 〈~∇~φµ
~,k,

~∇~φµ′

~ ′,k〉gl = δµ,µ′
∑

~ ′′∈J

w~ ′′,k
~∇φ~,k(~x~ ′′,k) ·

~∇φ~ ′,k(~x~ ′′,k),

and ~c~,k(t) :=~c(~x~,k, t). The matrix L for deformed Ek (nonlinear ~ϑk) can also
be constructed [e.g. , 9], and is supported in GASpAR.

As an example of global assembly, for the mesh partition in Fig. 8.1a, (8.9)
takes the following explicit form (suppressing zero-valued and µ > 1 blocks):

u =

(

u0
...

u17

)

=













u0,1
...

u8,1
u0,2
...

u8,2













=

















1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

















(ug,0
...

ug,14

)

.

87

For the mesh in Fig. 8.1b, the explicit form of (8.9) for the nonconforming
assembly matrix A = ΦAc is (suppressing zero-valued and µ > 1 blocks)

u =

(

u0
...

u26

)

=























u0,1
...

u8,1
u0,2
...

u8,2
u0,3
...

u8,3























=































1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 3/8 0 0 3/4 0 0 −1/8 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 −1/8 0 0 3/4 0 0 3/8 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1































(ug,0
...

ug,18

)

=













1

. . .
1

0 0 3/8 0 0 3/4 0 0 −1/8
0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0
. . .

1
0 0 −1/8 0 0 3/4 0 0 3/8
0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0
. . .

1

































1

. . .
1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





















(ug,0
...

ug,18

)

.

Note that the A entries corresponding to the child-node rows (see Fig.
8.1b) are not Boolean but that every row sum is unity. This result is to be
expected because A must accommodate interpolation of a constant solution
(e.g. , ug,i = 1 ∀i) across a nonconforming interface.

88

Appendix D

Contact information

If you would like to offer comments, or have questions or concerns, you may
contact us using the following information. While we are not able to offer
formal support to users at this time, we are very interested in your comments,
and we will try to get back to you as soon as possible.

You may contact the authors by surface mail, phone or fax at

Turbulence Numerics Team,
Institute for Mathematics Applied to Geosciences
NCAR
P.O. Box 3000 Boulder, CO 80307-3000, USA
tele: 303 497 1636; FAX: 303 497 2180

In addition, you may contact us by email at the following addresses:

Duane Rosenberg : duaner@ucar.edu
Aime´ Fournier : fournier@ucar.edu
Annick Pouquet : pouquet@ucar.edu

89

Bibliography

[1] Anagnostou, G., Y. Maday, C. Mavriplis, and A. T. Patera, “On the
mortar element method: Generalizations and implementation,” in Third
International Symposium on Domain Decomposition Methods, pp. 157–
173, SIAM, (1989).

[2] Basdevant, C, Deville, M., Haldenwang, P., Lacroix, J. M., Ouazzani,
J., Peyret, R., Orlandi, P, and Patera, A., “Spectral and finite difference
solutions of the Burgers equation,” Comp. Fluids, 14, pp., 23–41 (1986).

[3] Belgacem, F. B., “The mixed mortar finite element method for the in-
compressible Stokes problem: Convergence analysis,” SIAM J. Numer.
Anal., 37,(4) pp. 1085-1100 (2000).

[4] Bernardi, C., Y. Maday, C. Mavriplis, and A. T. Patera, “The mortar
element method applied to spectral discretizations”, Proceedings of the
Seventh International Conference on Finite Element Methods in Flow
Problems,, T. J. Chung and G. R. Karr, eds., University of Alabama,
Huntsville (1989)

[5] Chang, Rong-Yeu, Hsu, Chia-Hsiang, “A variable-order spectral element
method for incompressible viscous flow simultaion”. Int. J. Num. Meth.
Eng., 39, 2865–2887, 1996.

[6] Casadei F., E. Gabellini, G. Fotia, F. Maggio, and A. Quarteroni, “A
mortar spectral/finite element method for complex 2D and 3D elasto-
dynamic problems,” Comp. Meth. Appl. Mech. Eng., 191, 5119–5148
(2002).

[7] Chaljub, E., Y. Capdeville, and J. P. Vilotte, “Solving elastodynamics
in a fluid-solid heterogeneous sphere: A parallel spectral element ap-

90

proximation on non-conforming grids,” J. Comp. Phys., 187, 457–491
(2003).

[8] Dennis, J., Fournier, A., Spotz, W., St.-Cyr, A. Taylor, M., Thomas, S.,
and Tufo, H., High Resolution Mesh Convergence Properties and Parallel
Efficiency of a Spectral Element Atmospheric Dynamical Core, Int. J.
High Perf. Computing Appl., 19 pp. 225–235 (2005).

[9] Deville, M. O., P. F. Fischer and E. H. Mund, High-Order Methods
for Incompressible Fluid Flow. Cambridge, Cambridge University Press
(2002).

[10] Dubois-Pelerin, Y., V. Van Kemenate, M. O. Deville, “An Object-
Oriented Toolbox for Spectral Element Analysis”, it J. Sci Comp., 14,
pp. 1-29 (1999)

[11] Elmegreen, B. G., & J. Scalo “Interstellar turbulence, I: Observations
and Processes” Ann. Rev. Astron. Astrophys. 42, 211–273 (2004).

[12] Feng, H. and C. Mavriplis, “Adaptive spectral element simulations of
thin flame sheet deformations,” J. Sci. Comp., 17, pp. 1–3 (2002).

[13] Fischer, P. F., G. W. Kruse, and F. Loth, “Spectral element methods
for transitional flows in complex geometries,” J. Sci. Comput., 17, 1,
pp. 81–98 (2002).

[14] Fournier, A., G. Beylkin and V. Cheruvu, “Multiresolution adaptive
space refinement in geophysical fluid dynamics simulation,” Lecture
Notes Comp. Sci. Eng., 41, pp. 161–170 (2005).

[15] Fournier, A., M. A. Taylor, and J. J. Tribbia, “The spectral element
atmosphere model (SEAM): High-resolution parallel computation and
localized resolution of regional dynamics,” Mon. Wea. Rev., 132, pp.
726–748 (2004).

[16] Uriel Frisch, Turbulence: The legacy of A.N. Kolmogorov, Cambridge
University Press, 1995.

[17] Henderson, R. D., “Unstructured spectral element methods for simula-
tion of turbulent flows,” J. Comp. Phys. 122, pp. 191–217 (1995).

91

[18] Henderson, R. D., “Dynamic refinement algorithms for spectral ele-
ment methods,” Comput. Methods Appl. Mech. Engrg. 175, pp. 395–411
(1999).

[19] Isihara T., Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, “Spectra
of energy dissipation, enstrophy and pressure by high-resolution direct
numerical simulations of turbulence in a periodic box,” J. Phys. Soc.
Japan 72, pp. 983–986 (2003).

[20] Iskandarani, M., D. B. Haidvogel, and J. C. Levin, “A three-dimensional
spectral element model for the solution of the hydrostatic primitive equa-
tions” J. Comp. Phys. 186, pp. 397–426 (2003).

[21] Karniadakis, G.E. and S.J. Sherwin, Spectral/hp Element Methods for
CFD. New York, Oxford Iniversity Press (1999).

[22] Karniadakis, G.E., M. Israeli, and S.A. Orszag, “High–Order splitting
methods for the incompressible Navier-Stokes equations ” J. Comp.
Phys. 97, pp. 414–443 (1991).

[23] Kopriva D. A., S. L. Woodruff, and M. Y. Hussaini, “Computation of
electromagnetic scattering with a non-conforming discontinuous spectral
element method,” Int. J. Num. Meth. Eng., 53, pp. 105–122 (2002).

[24] Kruse, G. W., “Parallel nonconforming spectral element solution
of the incompressible Navier–Stokes equations in three dimensions,”
Ph.D. Dissertation, Division of Applied Mathematics, Brown Univer-
sity (1997).

[25] Levin, J. G., M. Iskandarani, and D. B. Haidvogel, “A nonfoncorming
spectral element ocean model,” Intl. J. Numer. Meth. Fluids 34, pp.
495–525 (2000).

[26] Maday, Y., C. Mavriplis, and A. T. Patera, “Nonconforming mortar
element methods: Application to spectral discretizations,” in Domain
Decomposition Methods, pp. 392–418, SIAM (1989). Also ICASE Report
88-59.

[27] Mavriplis, C., “Adaptive mesh strategies for the spectral element
method,” Comput. Methods Appl. Mech, Engrg. 116, pp. 77–86 (1994).

92

[28] C. Meneveau and J. Katz, “Scale-invariance and turbulence models for
large-eddy simulation,” Annu. Rev. Fluid Mech. 32, pp. 1–32 (2000).

[29] Patera, A., “A spectral element method for fluid dynamics: laminar flow
in a channel expansion,” J. Comp. Phys. 54, pp. 468–488 (1984).

[30] Rønquist, E. “Convection treatment using spectral elements of different
order,” Intl. J. Num. Meth. Fluids 22, pp. 241–264 (1996).

[31] Rosenberg, D., Fournier, A., Fischer, P., and Pouquet, A., “Geophysical-
astrophysical spectral-element adaptive refinement (GASpAR): Object-
oriented h-adaptive fluid dynamics simulation”, J. Comp. Phys., in press
(2005). Also available at www.arxiv.org: math.NA/0507402

[32] Sert, C. & Beskok, A., “Spectral element formulation on non-conforming
grids: A comparative study of pointwise matching and integral projec-
tion methods”, J. Comp. Phys., in press (2005).

[33] Shewchuck, Richard J. “An Introduction to the Conjugate Gradi-
ent Method Without the Agonizing Pain,” http://www-2.cs.cmu.edu/
jrs/jrspapers.html (1994).

[34] I. Sytine, D. Porter, P. Woodward, S. Hodson and K-H Winkler, “Con-
vergence tests for the Piecewise Parabolic Method and Navier-Stokes
solutions for homogeneous compressible turbulence”, J. Comp. Phys.
158, pp. 225–238 (2000).

[35] Tufo, H.M., Fischer, P.F., “Terascale Spectral element Algorithms and
Implementations”, Proceedings of the ACM/IEEE SC99 Conference on
High Performance Networking and Computing, IEEE Computer Soc.
(1999).

[36] Eric W. Weisstein. “Lobatto Quadrature.”
From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/LobattoQuadrature.html.

[37] Eric W. Weisstein. “Conjugate Gradient Method.”
From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/ConjugateGradientMethod.html.

[38] Whitham, G.B., Linear and Nonlinear Waves New York, Wiley (1974).

93

