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Numerical Weather Prediction (NWP)

e A weather forecast is produced by integrating forward (in time) a system
of nonlinear differential equations:

£+,
X5, = X¢ + / Q(u)du
t

Here, x; is initial condition (current state of atmosphere) and Q(t) = x;
defines the physics.

e A NWP model must be able to incorporate and combine:

1. physical laws for atmosphere (classical mechanics, thermo dynamics).
2. statistical and numerical techniques.

e Forecasting (weather) is an uncertain proposition
- a matter of probability?



Ensemble Forecasting

e A probabilistic view of prediction: p(x;).
e Difficult to solve forward integration of p(x;) analytically.

e An ensemble forecast is a (sample) collection of weather forecasts
that verify at the same time.

state of atmosphere at time t, +1 EMSEMBLE FORECAST

e The ensemble is (generally) derived under the same dynamic model start-
ing from different initial conditions.

e [ssue: how to sample from posterior?



NCEP Ensemble (Sivillo et al., 1997)

e 5640-m contour line of 500-hPa height field (15 November, 1995)
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NCEP Ensemble (Sivillo et al., 1997)

2.5 days lead time

e Ensemble spread (variance) decreased « forecast more accurate.



Lorenz System (Lorenz, 1963)

e Simplification of motion of a fluid heated below in a gravitational field.

e Lquations:

T, = —o(x+y)
Ye = TT — Y — TelYy
2 = Ty — bz

e x;  intensity of fluid flow
y; represents AT between ascending/descending currents
2 o« temperature gradient.



Ensemble Forecast

POSTERICR

- TRUE STATE 50
0 g
-20 -15 10 _5

0 5 10 15 50 -50




Atmospheric Data Assimilation & State-Space Framework

Data Assimilation

Updating our knowledge of the state of the atmosphere once new weather
data is available.

Atmospheric Model
Weather observations — y; = H;x;+ €

Atmospheric State — x; = G(x;_1)
y, € RO data

x;, € R unobserved

H; maps state to observation (linear or non-linear)
G highly nonlinear, chaotic (known or approximate)
€; (gaussian) observation error, cov(€;) = R

Sequential assimilation and forecasting:

Bayes G(+) Bayes
p(x:), ¥y — p(xely:)  —  p(Xei1), Yerr — p(Xe1|yin)



Forecast Chaos
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Linear Filtering

e Assuming p(xy) and p(y:|x;) both normal, assimilate y, and p(x;) using
the Kalman Filter (KF) (Kalman, 1960):

E(Xt‘Yt> = E(Xt‘Yt_l) == Kt[Yt — HtE(Xt’Yt—l)]

Py =(I- Kth)Ptf)
where
K, = P/H,(HP/H,+R), and
P! = E{[x, — E(x|Y0)|[x — E(x| Y, )]}
e Fasy to implement sequentially in systems with linear dynamics.

e Covariance recursion expensive for high-dimensional systems.



The Ensemble Kalman Filter (EnsKF)

e EnsKF proceeds by estimating the first two moments of the forecast
distribution using an ensemble (sample) of state vectors.

Ex|Y;) = BE(x Y1) + Ky, — HiE(x,| Y1)

Algorithm:

i. sample x; ~ p(x;_1|Y; 1), for i=1,...,m.
ii. propagate x! = G(x;), fori = 1,...,m.
iii. calculate F(x,|Y; 1) = LS x!, and P/

iv. update E(x;[Y;_1) using the sample moments from ii).

e Advantage: covariance information is propagated in a compact and re-
duced dimensional form, real-time efficiency, feasible to implement in
high-dimensional systems, performs well in low-order systems with un-
stable dynamics



Nonlinear Filtering

e No universal analytical solution exists.

e Use extended KF (Jazwinski, 1970); or, Sequential Monte Carlo (SMC)
filters (Doucet et al., 2001).

e Expect problems with the extended KF if:

— G(+) strongly nonlinear (Evensen, 1994; Miller at al. 1994).

use sample based filter, e.g. ensemble Kalman filter
(Evensen, 1994).

— p(x;) non-gaussian
use mixture (Gaussian sum) Kalman filter

(Alspach & Sorenson, 1972; Chen & Liu, 2000).
e Eixpect problems with SMC filters if:
— dim(x;) is large (Gilks et al., 1996; Robert & Casella, 1999)



A Mixture Ensemble Kalman Filter

e Suppose p(x;) is non-gaussian.

e We approximate p(x;) by a mixture of Gaussian distributions:

k
Xt) - ZpZMN(“’m P
1=1

By Bayes theorem,
plxlye) = ZP*MN p;, PY)

Here (p}, Py) are found by KF, and pf o« p; X p(y:| s, Pi)
e Need to choose k, MN(p;, P;)

Gaussian prior/posterior — k = 1
Kernel density estimate — k = ensemble size



A (Bootstrap) Particle Filter (Doucet et al., 2001)

Bayes .

. G(sample) N Bayes .
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A Sampling Scheme

1. Calculate pf using KF, and find py.
2. Generate the following random quantities:
x*~ MN(O,P;), y"=Hx"+e
where e ~ MN(0,R).
3. Find u = x* — K,y*, and let z; = p; + u. Use z; with probability pr.

Note that the perturbation u has the correct (posterior) covariance:
Cov(u) = Cov(x") 4+ Cov(K;y*) — 2Cov(x*, K;y)
— P, +P,H' (HP,H" + R) 'HP, — 2P, H"(HP,H” + R) 'HP,

e No need to factor P; if x* is a sample perturbation from the prior en-
semble.



Simulations

Form of prior p(Xy) Statistics
Gaussian MN(p, P) (f¢, P) = ensemble mean, cov.
Mixture >  =MN(ft;, P;) fr; = i:th ensemble member

P; = cov. in neighborhood of f,

o m = (40,400), H, = I, var(e;) = 4I, T = 5000.

e FError measure:

median of RMSE, = \/(x, — B(xily,))/(xi — E(xly.))/3

0y Gaussian, k=1 Mixture, k=m
m=40 m =400 m =40 m =400

1 51 .35 54 ?

25 75 .68 .56 52

D 1.06 1.05 76 71

e Improvement is 25-30%.



Unstable Dynamics
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Conditional Simulation Results

e Condition on posterior means from gaussian assimilation
located in saddle (T = 250).

e m = (40,400), H; = I, var(e;) = 41

e Error measure: median of RMSE,

J; Gaussian Mixture
m =400 m =40 m = 400
D 1.64 94 73

e Improvement following unstable (saddle) area is 45-55%.



Computational Issues: Sequential Assimilation of Observations

Lemma

For uncorrelated (independent) measurement errors, sequential as-

similation of observations yields the same result as simultaneous assim-
ilation.

e Implication: The inverse of the Kalman gain matrix does not have to be
explicitly calculated.

e The j observation at time ¢ is related to the state by yl = hix, + €.
Assimilation of g/ is given by

E(th’ga Yt—l) = E(Xt‘ygj_l)a Yt—l) + Kgf’j_l)[yj - h‘ZE(XtIij_l), Yt—l)],

P

ko (o] 2 k (fk) _
where y¥ = (y/,y7, ... ,y’), and K" = PP R

e To obtain F(x;|Y;) iterate above for all observations in y;.



Computational Issues: Limiting Impact of Observations.

e Observations are (fairly) local in space — h; is sparse.

e (From sequential update) Need to compute PJ R,

m

s 1 . . /
P‘tfht = 7 [X{ - E(Xt’Yt—l)Hht[Xzf — E(x[Y:1)]}

m — 1

i=1
LS ol — Bx[Yio)
= — ;| x; — B (x| Y
m — 1 — t t—1
e In terms of error structure, physically remote state variables should be
uncorrelated. Observations over Boulder should not update the atmo-

spheric state over London.

e By considering local information in the updates, effects of sampling vari-
ability of x! is decreased.



MSE Properties of EnsKF

e What are the effects of sampling variability on EnsKF update?
e Suppose linear dynamics:  F(x,|Y,_1) ~ MN(E(x,[Y,_1), %P{)
We have the following orthogonal decomposition:
E(xi|Y,) =E(xi|Y,-1) + Kily: — HiE(x|[ Y1)
(I - K Ht)[ (Xt’Yt 1) — E(x| Y1)
( Ky)ly: — HtE(Xt‘Yt )]
+(K, ){ | E (Xt‘Yt—l) — E(x:| Y1)l }

e Let n, = (I - K,Hy)|E (Xt’Yt 1) = B(x| Y1)

e We wish to study E(n,'n;) as a function of the eigenstructure (values) of

P/.



Effects of Sampling Variability on EnsKF

o Let i eigenvalue of P/ oc i, > 1. Set tr(P]) =

RMSE Filter difference
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e Here, H, =1, and R =1 Y-axis: \/_ mm Xeaxis; Z8)

tr(Py)”




Summary

e We have presented a bootstrap mixture Kalman filter for recursively
tracking atmospheric states.

e But, ... what we really have is a updating procedure which is locally
linear.
e Maybe, ... the weighting (represented by p;’s) can resolve non-gaussian

structures.



Future Directions

e How to construct mixture? (order, kernels)

e Sequential parameter estimation; incorporate model (parameter) uncer-
tainty.

e Validate mixture approach on higher dimensional system, e.g. Lorenz
(1996).

e Formalize algorithms for rank deficient cases, i.e., when m <& dim(x;).



