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Abstract

Many geophysical problems (e.g., numerical weather prediction) are

characterized by high-dimensional, nonlinear systems and pose difficult

challenges for real-time data assimilation (updating) and forecasting. This

work builds on the ensemble Kalman filter (EnsKF) to produce ensem-

ble filtering techniques applicable to non-Gaussian densities. These tech-

niques also extend to high-dimensional systems.

Two filtering algorithms are presented which extend the ensemble

Kalman filter by use of Gaussian mixtures. The first method, referred

to as a mixture ensemble Kalman filter (XEnsF), adaptively represents

local covariance structures using nearest neighbors. An efficient sampling

algorithm is presented for XEnsF, and the filter is shown to be superior to

existing methods in simulations on a three-dimensional model. A second

algorithm, the local-local ensemble filter (LLEnsF), combines localizations
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in physical as well as phase space, allowing the update step in high di-

mensional systems to be decomposed into a sequence of lower-dimensional

updates tractable by the XEnsF. Sequential XEnsF updates at different

spatial locations are smoothly joined together using output from EnsKF.

Given the same ensemble in a 40-dimensional system, the LLEnsF update

is shown to locally produce more accurate estimates of the state than

the EnsKF when the underlying distributions are strongly non-Gaussian.

In the 40-dimensional system, a hybrid filter combining the output from

LLEnsF with that of EnsKF is shown to outperform the EnsKF by 5.7%.

Keywords: Non-linear filtering, data assimilation, Bayesian filtering, particle

filtering, ensemble Kalman filter, numerical weather prediction, state estima-

tion.

1 Introduction

Data assimilation for the ocean and atmosphere are important cases of estimat-

ing the state of a system given a sequence of observations and (some) knowledge

of the evolution of the system. Because the observations and the forecast model

are inexact (and because the evolution of the state depends sensitively on initial

conditions), the true state of the system can never be determined precisely. The

most complete summary of our knowledge of the system state is therefore given

by the probability density function (pdf) of the state conditional on the observa-

tions (Epstein 1969). In a geophysical context, both forecasting this pdf forward

in time and updating the forecast pdf given new observation have formidable
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obstacles: the dimension of the state-vector in most oceanic and atmospheric

models is extremely high, often exceeding 106 components, and the systems are

significantly nonlinear, leading to the potential for non-Gaussian pdfs.

The present article focuses on ensemble or Monte-Carlo techniques for fore-

casting and updating of the pdf. One promising approach for high-dimensional

geophysical problems is the ensemble Kalman filter (EnsKF; Evensen 1994,

Houtekamer and Mitchell 1998). The EnsKF update, however, depends only

on the first and second moments of the ensemble and is thus suboptimal for

non-Gaussian pdfs. Our goal here is to build on the EnsKF to produce ensem-

ble techniques applicable to non-Gaussian pdfs, and to be generally useful these

techniques should have the property of extending to high-dimensional systems.

The algorithms we present approximate the forecast distribution by mixtures

of Gaussian distributions. The use of Gaussian mixtures allows (in principle)

arbitrary, non-Gaussian pdfs to be handled and reduces updating the pdf given

observations to updating each individual Gaussian in the mixture along with

its mixing probability (Anspach and Sorensen 1972). Gaussian mixtures have

been used before as the basis for ensemble assimilation techniques (Anderson

and Anderson 1999, Chen and Liu 2000), but these existing techniques are

problematic in high-dimensional systems.

The difficulties with such existing techniques arise in part because the meth-

ods used to resample from the posterior pdf are computationally intensive. At a

more fundamental level, however, the difficulties are intertwined with the well-

known difficulty of estimating pdfs in high dimensions (Silverman 1986). Simple
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estimates suggest that the sample size required to estimate a multivariate pdf

with a given accuracy increases exponentially with dimension. For systems with

106–108 variables, such as global atmospheric forecast models, the huge sample

sizes required clearly rule out direct, brute-force attempts to estimate non-

Gaussian pdfs. Mixture estimates suffer from the same limitations. In ensemble

techniques, these limitations result in extremely large sampling variability and

the collapse of the mixture onto a single ensemble member.

To make non-Gaussian updating feasible in high dimensions, we suggest

three enhancements of these existing techniques.

1. The covariance for each Gaussian in the mixture is based on the sample

covariance of a subset of ensemble members that are close in phase space

to each center. This makes the mixture adaptive as the estimate of the

pdf depends on the structure of the sample in phase space, and helps to

capture lower-dimensional ”sheets” that are typical of chaotic dynamics.

2. We generalize the implicit sampling scheme of EnsKF, which avoids ma-

nipulation of large matrices and is feasible in high dimensions, to mix-

tures of Gaussian distributions. The extension is straightforward but is

not available in the literature.

3. The algorithms allow each observation to influence only state variables

that are nearby in physical space. This physically local updating is a

common feature of geophysical assimilation schemes, including both op-

timal interpolation (Schlatter et al. 1976) and the EnsKF (Houtekamer
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and Mitchell 1988), but as local non-Gaussian updates at different physical

locations must be smoothly blended its application is novel and nontrivial.

We will show that these three ideas yield a technique that can produce an

update with smaller MSE than the EnsKF given underlying distributions that

are strongly non-Gaussian.

The paper proceeds as follows. Section 2 presents additional background and

notation. This includes an introduction to the atmospheric and oceanic assimi-

lation problem, together with background on the Kalman filter, the EnsKF, and

the update for a Gaussian mixture. Readers familiar with these topics may wish

to proceed directly to section 3, which outlines two filtering algorithms. These

we term the mixture ensemble filter and the local-local ensemble filter. The

local-local filter is then used in conjunction with the EnsKF yielding a hybrid

filter incorporating each of the three enhancements discussed above. Section

4 tests the algorithms on two dynamical systems: the classic Lorenz system

(Lorenz 1963) and a 40-dimensional system mimicking flow around a latitude

circle (Lorenz 1996). Although the 40-dimensional system is small compared

to numerical weather prediction models, it is easily large enough to challenge

existing non-Gaussian techniques. Section 5 discusses strengths and limitations

of the new methods.
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2 Background and notation

2.1 The update/forecast cycle

We will focus on the data assimilation and forecasting problem associated with

numerical weather prediction. In this problem, the goal is to modify the forecast

pdf for the system once new data is available. The modified pdf is then prop-

agated forward using knowledge of the system dynamics to give a new forecast

and subsequently updated again when new observations become available. This

process, which we will refer to as a filtering algorithm, consists of two distinct

steps: an update or data-assimilation step, and a forecast step. As mentioned,

both the update and forecast steps are challenging to implement in a geophysical

context.

In the update step, a forecast pdf is updated given a new set of observations

via Bayes theorem. The best known filtering algorithm is in the context of

Gaussian distributions and linear system dynamics where the update pdf is

described by the Kalman filter recursion (Kalman 1960). Unfortunately, analytic

solutions to the update step can only be derived for a few special cases, and

working explicitly with the state pdf is therefore not practical. As an alternative,

various computational techniques have been developed in the last two decades

to address more complex problems (see, e.g., Gilks et al. 1996). However, as

the computational requirements increase rapidly with dimension, calculation

of the update pdf can only be envisioned for systems with a small number of

degrees of freedom. Furthermore, for problems involving sequential estimation

6



(and propagation), these methods have proven inefficient (Doucet et al. 2001).

In the forecast step, a probabilistic forecast is made by evolving the updated

pdf forward in time. This is done using known or approximate dynamical laws,

typically specified by stochastic differential equations. A statistician may view

the forecast step as a transformation-of-variables problem: given a pdf for (the

random variable) X, and a transformation G(·), representing the time evolution

of a dynamic system, find the pdf of the transformation G(X). Not surprisingly,

analytic solutions in the forecast step are rarely available and direct calculation

of the forecast pdf in many dimensions is computationally prohibitive.

Some of the difficulties of implementation described above can be surmounted

by approximating the pdf with a discrete sample, which we will refer to through-

out this paper as an ensemble. Given an ensemble sampled from the updated

pdf, the forecast ensemble is derived by propagating each ensemble member

using G(·) (Leith 1974). By elementary probability rules, this yields a sample

from the forecast pdf. In this article we will assume that G is known perfectly,

although some model errors could be represented by a stochastic process and

incorporated into this framework (Jazwinski 1970). Updating the forecast en-

semble given observations (that is, constructing a sample from the updated pdf)

is considerably more complex, especially for non-Gaussian pdfs, and is the fo-

cus of this article. The update step for the EnsKF is reviewed in section 2.4,

while section 3 presents our algorithms for non-Gaussian pdfs based on Gaussian

mixtures.

Outside the geosciences, there is also a rich statistical literature on particle
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filters (PF) and their variants (Doucet et al. 2001). PF are a set of Monte-

Carlo techniques for approximating the fully nonlinear, Bayesian update. In

their simplest form they represent the forecast pdf with a ensemble but may also

carry importance weights attached to each member member, or “particle.” The

algorithms we consider, in contrast, use ensembles of equally weighted members

that can be manipulated as if they were a random sample. PF applications have

focused on low dimensional systems and system dynamics that has a random

component. In this paper we consider deterministic but chaotic systems, a

reasonable framework for problems associated with atmospheric and oceanic

data assimilation.

2.2 Notation and the Kalman filter

To set notation, let xt denote the state vector of the system at time t and let yt

be a new vector of observations. Initial knowledge of the system is given by the

conditional forecast distribution p(xt|Yt−1), where Yt−1 denotes all past data

up to and including time t−1. The update step combines the forecast distribution

and the new data, giving the posterior distribution p(xt|Yt). Calculation of

p(xt|Yt) is an application of Bayes Theorem.

We now outline the standard Kalman filter update, since it forms the basis

for all subsequent techniques here. Suppose that a linear observation operator,

Ht, relates the unobserved state, xt, to the data, yt:

yt = Htxt + et, (1)

where et ∼ N(0,R). Without loss of generality, R may be assumed diagonal—
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one can always transform (1) to an observation equation with i.i.d. errors by

multiplying through by R−1/2.

If we assume that p(xt|Yt−1) ∼ N(µf
t ,Pf

t ), then a straightforward applica-

tion of Bayes theorem yields

p(xt|Yt) = N(µu
t ,Pu

t ) (2)

where

µu
t = µf

t + Kt(yt −Htµ
f
t ) (3)

and

Pu
t = (I−KtHt)P

f
t (4)

Here, Kt denotes the Kalman gain matrix and is given by

Kt = Pf
t H

′
t(HtP

f
t H

′
t + R)−1, (5)

where a prime superscript denotes matrix transpose.

For completeness, we note here that if the system dynamics are linear then

the forecast distribution will again be multivariate normal and the covariance

and mean have simple closed forms. However, this aspect will not be used on our

discussion as in all subsequent methods we approximate the forecast distribution

through the propagation of an ensemble. The creation of the ensemble in the

update step is described in the next section.

2.3 Ensemble Kalman filter update

The EnsKF, which has been recently advanced in the geosciences (Evensen 1994,

Houtekamer and Mitchell 1998), is a Monte-Carlo based approach to forecast-
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ing and data assimilation. The continuous forecast and update distributions

are approximated by a discrete distribution of ensemble members where each

member is a point mass assigned equal probability. (The EnsKF may thus be

considered a special case of a particle filter.)

To anchor our extensions to the EnsKF, we first describe one of its standard

implementations. Let {xf
t,i} for 1 ≤ i ≤ m denote an m member ensemble

representing the distribution p(xt|Yt−1). The update step consists of applying

an approximate form of the Kalman filter update (2) to each member. Specif-

ically, the algorithm estimates an approximate gain matrix, K̃t using sample

covariances based on the ensemble:

Pf
t H

′ ≈ (m− 1)−1
m∑

i=1

(xf
t,i − x̄t)[H(xf

t,i − x̄t)]′, (6)

HPf
t H

′ ≈ (m− 1)−1
m∑

i=1

[H(xf
t,i − x̄t)][H(xf

t,i − x̄t)]′, (7)

where x̄t denotes the forecast ensemble mean. Each member is then updated

according to

xu
t,i = xf

t,i + K̃t

(
yt + εt,i −Htx

f
t,i

)
, (8)

where {εt,i} for 1 ≤ i ≤ m is a sample from N(0,R). If {xf
t,i} was sampled

from N(µf
t ,Pf

t ), then the EnsKF update converges to that of the KF for large

m and linear algebra can be used to verify that xu
t,i is a sample from the update

distribution given in (2) (Houtekamer and Mitchell 1998, Burgers et al. 1998).

Although there are other, standard ways to sample from the posterior dis-

tribution (2), the scheme (8) is applicable in high dimensions since it does not

require the explicit (and computationally expensive) covariance recursion de-

10



fined in (4) or other direct manipulation of the covariance matrices. Instead,

the algorithm relies on being able to multiply the Kalman gain matrix by arbi-

trary vectors and in this way the large matrices are never explicitly constructed

or stored.

One further assumption is necessary to make the EnsKF feasible and effec-

tive in high-dimensional problems. When the domain of interest encompasses

many characteristic spatial scales of the physical system, it is often the case that

the covariance of two elements of the state vector will be nearly zero when the

physical locations corresponding to those elements are separated by a sufficient

distance. Many or most of the elements of the sample covariance matrix are

then expected to be small. In most implementations of the EnsKF, covariances

at sufficient separation are therefore assumed to decrease smoothly to zero at a

certain distance; this increases the computational efficiency of the update and

decreases the effects of random error arising from working with a sample co-

variance (Houtekamer and Mitchell 2001, Hamill et al. 2001). We refer to this

method as tapering the sample covariance matrix. Statisticians can understand

this modification as a specific way of shrinking the sample covariance matrix el-

ements toward zero for large separation distances but still retaining the positive

definite character of the matrix. Delineating the statistical properties that are

produced through tapering remains an open question.
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2.4 Updating a Gaussian mixture

The Kalman filter update is easily extended to a mixture of Gaussian distribu-

tions (Anspach and Sorensen 1972). Suppose that p(xt|Yt−1) is a mixture of L

multivariate normal distributions:

L∑

l=1

πf
t,lN(µf

t,l,P
f
t,l).

With the observation equation as defined above, the updated distribution is

again a mixture of L multivariate normal distributions:

L∑

l=1

πu
t,lN(µu

t,l,P
u
t,l), (9)

where the mean and covariance matrix of each component of the mixture are

updated in an analogous manner as in the single Gaussian case. Specifically,

one determines µu
t,l and Pu

t,l by substituting µf
t,l for µf

t and Pf
t,l for Pf

t in (3)

and (4). The mixing probabilities are updated by calculating

πu
t,l =

πf
t,lwl∑L

k=1 πf
t,kwk

, (10)

with wl given by

|(HtP
f
t,lH

′
t+R)|−.5 exp

[
−(1/2)(yt −Htµ

f
t,l)

′(HtP
f
t,lH

′
t + R)−1(yt −Htµ

f
t,l)

]
.

3 Ensemble mixture filters

This section presents two non-Gaussian algorithms for the update step. Like the

EnsKF, each begins with an ensemble that is a sample from the prior forecast

distribution and updates that ensemble to produce (approximately) a sample
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from the posterior distribution given observations. [The forecast step, as dis-

cussed in section 2, would consist of simply propagating each ensemble member

to the next observation time using the forecast model.] Unlike the EnsKF, these

algorithms are based on Gaussian mixtures.

The first scheme below, which we find to be effective in low dimensions,

chooses the mixture centers randomly from the forecast ensemble, and then

estimates the covariance for each component of the mixture using ensemble

members that are “close” in the state space to the mixture centers. The second

scheme extends the first to high-dimensional systems by assimilating observa-

tions sequentially (one at a time or in blocks) and updating only the portion of

the state vector that is physically local to the observation location.

3.1 Mixture covariances based on local state space infor-

mation

We first extend the EnsKF to a mixture filter for low-dimensional systems. The

basic idea is to update each component of the mixture using “local” sample

statistics, that is, from ensemble members that are close in state space to the

mixture center. This filter will be termed the mixture ensemble filter, or XEnsF.

The update begins with a forecast ensemble {xf
t,i, i = 1, . . . , m}. To derive

a mixture from this ensemble, we choose at random L ensemble members to be

the centers of the mixture components; the first L members may be taken as

centers for convenience, since there is no preferred order among the ensemble

members. Next, we identify from the ensemble the N nearest neighbors to each
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center. (All our calculations use the Euclidean norm to define distance in state

space, though other norms could be employed.) The covariance associated with

each center xf
t,i is then given by Pi, the sample covariance for the N nearest

neighbors of xf
t,i. Finally, the algorithm must produce an updated ensemble that

is consistent with the update of the continuous mixture through (9). Denoting

by Kt,i the Kalman gain matrix with Pi substituted for Pf
t , the complete update

step is as follows:

Mixture Ensemble filter

• Given {xf
t,i, i = 1, . . . ,m}

• Update mixing probabilities. For l in [1, L]:

– Find N nearest neighbors to xf
t,i in state space.

– Calculate πu
l from (10) using Pl based on the nearest neighbors.

• Update ensemble. For j in [1,m]:

– Choose a random index I ∈ [1, L] where P (I = i) = πu
i .

– Choose one of N nearest neighbors of xf
t,I , each with probability 1/N ;

denote this member by x∗.

– Update according to (8) using nearest neighbors:

xu
t,j = x∗ + Kt,I(y + e∗ −Hx∗),

where e∗ is drawn from N(0,R).
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While we have not explored tuning these parameters, the XEnsF requires

the choice of the ensemble size m, the number of nearest neighbors N and the

number of centers L. For future reference we will refer to this dependence as

XEnsF(m,N ,L).

Note that the sampling from the updated mixture distribution in the XEnsF

is a modest elaboration from the EnsKF. To draw a sample from (9), the al-

gorithm first samples an integer from 1 to L from the multinomial distribution

with probabilities given by πu
t,l. Denoting this random index by I, the algorithm

then samples from the Ith component of the mixture using (8) and the nearest

neighbors of xf
t,I . It is straightforward to extend the arguments of Houtekamer

and Mitchell (1998) and Burgers et al. (1998) to show that this produces a

sample from (9) for m →∞. The use of this sampling scheme, which as noted

in section 2.3 does not require the manipulation of large covariance matrices, is

one crucial step toward implementing mixture filters in high dimensions.

Simulation results in the next section will demonstrate that the XEnsF out-

performs the EnsKF for a three-dimensional nonlinear system. Although suc-

cessful in low-dimensional systems, we expect the XEnsF to break down when

applied to high-dimensional systems owing to the inherent difficulties of esti-

mating high-dimensional systems. This difficulty is manifest in our experiments

by the tendency for the XEnsF update to weight a single center heavily, so that

the ensemble collapses on to a single solution after a few forecast-update cycles.
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3.2 Local-Local Ensemble filter

In order to address the problems of the XEnsF in high dimensions, we assume

that observations only influence the update of state variables that are nearby in

physical space. This allows the update step to be decomposed into a sequence

of lower-dimensional updates that are tractable with the XEnsF. The resulting

algorithm then consists of repeated applications of the XEnsF to physically local

subsets of the state vector.

To set the stage we first note a well known sequential property associated

with the update step. If observations are independent conditional on the state

vector then the posterior can be updated sequentially taking each observation in

turn. This sequential process will yield the same posterior pdf as what one would

obtain using a single and simultaneous update of the full observation vector and

of course will not depend on the order that observations are used. This result

is a consequence of the factoring of the joint distribution of observations based

on conditional independence and does not require the assumption that pdf be

Gaussian or a mixture of Gaussians.

We will assume that each component of the state vector is associated with

a location and that covariances among the components of x are localized in

the sense that they are close to zero when components are separated by large

distances. In addition, we assume that the observations are also localized, by

which we mean that each row of H has a limited number of nonzero elements and

those elements correspond to state variables in some region of limited spatial

extent. Examining the form of the Kalman gain when the observation is a scalar
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one notes that a component of xf
t will only be changed by a new observation

if the corresponding row of Pf
t H is nonzero. This leads to the intuition that

the update of the state vector based on a single new observation should only

affect a subspace of x. We will refer to this portion of the state vector as the

observation neighborhood. Because of our assumption that covariances (and H)

are localized, the observation neighborhood will be of low dimension. We then

propose to update using the XEnsF within this observation neighborhood.

The resulting algorithm combines the use of local state-space information in

the XEnsF with localization in physical space, and will be denoted the local-

local ensemble filter, or LLEnsF. As mentioned above one can choose to update

observations sequentially and so the LLEnsF will have an added outer loop

over observations. For the kth observation, let x[k] denote a reduced state

vector consisting of only those components of x contained in the kth observation

neighborhood. With this notation, and recalling the dependence of the XEnsF

on the tuning parameters m, N , and L, the update step of the LLEnsF may be

summarized as:

• Given {xf
t,i, i = 1, . . . ,m}.

• Loop over observations. For k in [1, n]:

– Apply XEnsF(m,N, L) to update elements of x[k].

Note that the size of the observation neighborhood (its radius, for example)

must be chosen for the LLEnsF, in addition to m, N , and L.

This algorithm has two important features. First, the mixture filter suitable
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for non-Gaussian distributions is applied repeatedly to low dimensional com-

ponents of the state vector. In particular, it avoids a single high dimensional

update which typically leads to the collapse onto a single mixture component (or

particle in the case of PFs). Secondly, LLEnsF includes the standard ensemble

Kalman filter as a special case. This will happen when L = 1, N = m and the

observation neighborhood includes all components of the state vector.

Although the LLEnsF provides a non-Gaussian update in a spatially local

neighborhood the posterior sample states may be disjointed between observation

neighborhoods. To address this issue we next explain how to create a smooth

update of the complete state vector.

3.3 Smoothness Considerations

We shall sample state variables inside and outside of the observation neigh-

borhood differently to guarantee that the LLEnsF samples adjoining neighbor-

hoods in a manner that respects the prior relationships among state variables.

To simplify notation we drop all super- and subscripts as these are clear from

the context. It is further convenient to split the state vector into two parts

x = [x′L x′G]′, where xL corresponds to x[k] and xG corresponds to state vari-

ables outside of the observation neighborhood. Now consider the equality

p(x|Y) = p(xL|xG,Y)p(xG|Y), (11)

where the joint distribution of the state vector is split into two parts. To ob-

tain an estimate of p(x|Y) the above equality suggests to first sample state

variables outside of the observation neighborhood xu
G,i ∼ p(xG|Y), and then
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to draw zu
L,i ∼ p(xL|xG,Y) by setting xG = xu

G,i. The full result is a ran-

dom draw where zu
L,i and xu

G,i represent a smooth state vector. As (presum-

ably) dimension(xG) > dimension(xL), this sample scheme will be referred to

as global-to-local adjustment.

To implement the sequential sample scheme we suggest combining outputs

from EnsKF and LLEnsF using (11). Specifically, we use output from EnsKF to

represent p(xG|Y), while p(xL|xG,Y) will be based on output from the inner

(observation) loop of LLEnsF. With xu
i = [(xu

L,i)
′ (xu

G,i)
′]′ obtained by the

sampling algorithm (8) let



ΩL ΩLG

ΩGL ΩG


 =




cov(xu
L,i) cov(xu

L,i,x
u
G,i)

cov(xu
G,i,x

u
L,i) cov(xu

G,i)


 . (12)

Then, using the sample draws zu
i from the LLEnsF along with xu

G,i calculate



zu
L,i

xu
G,i


 =




ΩLGΩ−1
G (xu

G,i − x̄u
G) + A(zu

i − z̄u)

xu
G,i


 +




z̄u

0


 , (13)

where ΩGL and ΩL are as defined in (12) and z̄u = m−1
∑

i z
u
i and x̄u

G =

m−1
∑

i x
u
G,i are sample means. The first term defining zu

L,i predicts state com-

ponents inside the observation neighborhood given state components outside

the neighborhood, while the second term adds scaled posterior perturbations

taken from LLensF. The posterior distribution p(x|Y) is thus given through

(13), and A should be chosen so that the posterior distribution is as “close” as

possible to the true non-Gaussian filtering density. In practice, the choice of A

will depend on how informative {zu
i } and {xu

i } are relative to the true filtering

distribution, and for the systems of interest here a reasonable starting choice
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is given by A = (ΩL − ΩLGΩ−1
G ΩGL)1/2cov(zu

i )−1/2, setting cov(zu
L,i) = ΩL.

(For systems where trace{cov(zu
i )} ¿ trace{ΩL}, a local-to-global adjustment

(described in Appendix B) may be preferable.)

Note that, by the sampling scheme of LLensF, zu
i and xu

G,i are independent,

and it follows that the covariance of zu
L,i and xu

G,i will equal ΩGL. Thus, (13)

produces samples with exactly the same statistical smoothness properties as

EnsKF.

In section 4.2 we use the global-to-local adjustment when applying the LLEnsF

to a 40-dimensional dynamical system.

4 Simulations

We evaluate the filter methods described in the previous section on two nonlinear

dynamical systems. Both are sensitive to initial conditions, leading to unstable

solutions and error growth. The first system, here denoted L3, is the classic

three-dimensional system of Lorenz (1963). The second system, denoted L40,

consists of 40 state variables that correspond to locations on a latitude circle, so

that the spatial localizations discussed previously can be applied, and includes

quadratic nonlinearity designed to mimic advection (Lorenz 1996). Equations

defining the two systems are given in the appendix. The XEnsF algorithm is

evaluated on L3 and the LLEnsF is evaluated on L40.
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4.1 Simulations for L3

L3 has been studied extensively in the context of data assimilation (see, e.g.

Miller et al. 1994, Evensen 1997, and Anderson and Anderson 1999). As can

be seen in Figure 1, the system attractor has two lobes or orbits connected near

the origin. The trajectories of the system in this saddle region are particularly

sensitive to perturbations. Hence, slight perturbations can alter the subsequent

path from one lobe to the other. Figure 1 also depicts the error growth exhibited

in the system. As sample ensemble points pass through the saddle they rapidly

disperse across the two attractor lobes. Thus, even on fairly short time scales the

dynamics of this system leads to distinctly non-Gaussian forecast distributions.

To evaluate the effects of the non-linear dynamics on filter performance,

forecast lead time δt is varied across four levels: δt = .1, .25, .5, 1. These

lead times provide a range of conditions from approximately linear to fully

nonlinear dynamics of the forecast errors. The numerical experiments also

vary the number of mixture components (L = 10, 40) and ensemble mem-

bers (m = 60, 90, 110, 140), while the number of nearest neighbors was fixed

at N = 25. The observation operator is taken to be the identity matrix, i.e.,

Ht = I, and the observation errors are independent and normally distributed

with a variance of 4 (Rjj = 4). Thus, an informative baseline for the root (pos-

terior) mean squared prediction error is 2 (
√

Rjj), the error incurred simply by

using the observation vector as a naive update of the state.

Table 1 reports simulation results for assimilating observations over 10000

assimilation cycles, each separated by a time interval of δt, using the XEnsF and
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Figure 1: The Lorenz attractor. Non-Gaussian structures appear quickly in this

system: 400 points in the upper left-hand corner are sampled from a Gaussian

distribution, and have been propagated .1, .25, and .5 time units, respectively.
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standard EnsKF. At each observation time the root mean squared error (RMSE)

between the sample posterior mean and the true state of the system is calculated

for each filter. The prediction error is measured as the median RMSE across all

time points. As can be seen from Table 1, the mixture EnsKF performs better

than the single Gaussian EnsKF for forecast lead times greater than δt > .1,

with an overall improvement of approximately 20-30% in median RMSE. The

improvement is more marked for larger forecast lead times, consistent with the

expected increase of nonlinearity and non-Gadolinite as δt increases.

δt XEnsF EnsKF

L,m = 10, 60 10,110 40,90 40,140 m = 40 120

.1 .59 .60 .48 .47 .38 .37

.25 .72 .71 .49 .52 .72 .69

.5 .93 .90 .69 .69 1.05 1.05

1 1.19 1.14 .93 .90 1.37 1.37

Table 1: Simulation results for the L3 system in terms of median RMSE for the

posterior mean. Results are estimated for 10000 assimilation cycles.

The median RMSEs reported in Table 1 are a summary of filter performance

across the whole attractor. As an example of the effects of non-Gaussian fore-

casts on filter performance we took the 250 assimilated states from the EnsKF

that were located closest in the saddle region of the attractor. We then per-

formed one forecast cycle with δt = .5 and used both the XEnsF as well as the

EnsKF to assimilate new data. The median RMSE for the XEnsF with L = 100
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and m = 500 was .73, while the EnsKF with m = 400 yielded a median RMSE

of 1.64 for a resulting improvement of over 50%. Thus, for forecasts that are

distinctly non-gaussian the XEnsF significantly outperforms the EnsKF.

4.2 Simulations for L40

Simulations for L40 use forecasts of length δt = .4 and take observations of

every other state variable. Thus, at each assimilation cycle we have available

the following set of observations: {y1 = x1+ε1, y2 = x3+ε2, . . . , y20 = x39+ε20}.

The observational errors are independent and normally distributed with variance

.5. These settings are chosen to produce non-Gaussian behavior in the forecast

ensembles.

As a baseline of performance, the EnsKF was applied with an ensemble size

of m = 400. A tapering function that down-weighted the sample covariances

between spatially distant state components was used at each assimilation step.

The tapering function was defined by (4.10) of Gaspari and Cohn (2001), with

their parameter c chosen such that the covariance of state variables separated

by 20 index points or more (e.g., x1 and x21) is set to zero. Each of the 20

observations were assimilated serially at every time step. Based on posterior

mean estimates at every assimilation cycle, the EnsKF produced a time averaged

RMSE of .972 across 2000 assimilation steps. The sample variance of the RMSE

was s2 = .125, and the median RMSE was .882. The forecast distributions

produced by the EnsKF appear to be noticeably non-Gaussian, so there is clearly

some potential to improve on the EnsKF.

24



To provide some quantification and evidence of the non-Gaussian structure

of the forecasts produced by the EnsKF we will focus on a 3-dimensional subset

of the state-vector involving variables {x1, x2, x3}. (Since L40 is invariant to

translation, any three adjacent state variables will have the same statistical

properties.) Letting zi,t denote the deviation of the ith ensemble member from

the mean at time t in the space of {x1, x2, x3}, we calculate di,t = z′i,tΣ̂
−1zi,t,

for i = 1, 2, . . . , m. Here, Σ̂ denotes the sample covariance of zi,t (with respect

to the subscript i). If the ensembles of {x1, x2, x3} follow a multivariate normal

distribution, then di,t will approximately follow a chi-squared distribution with 3

degrees of freedom. Applying the Kolmogorov-Smirnov (KS) test (Kolmogorov

1933) at each assimilation cycle, i.e., for t = 1, 2, . . . , 2000, the hypothesis of

normality was rejected in 1896 cases at the .05 critical level. The mean of the

KS test-statistic was .139, well above the .001 level of significance of .094. Hence,

there is strong evidence of frequent departures from multivariate normality. To

provide a visual example of the structure of the non-Gaussian ensembles at a

given time point, Figure 2 depicts bi-variate plots of {x1, x2, x3}. The lower

right plot in Figure 2 shows a histogram of the KS test-statistics calculated

from the 2000 forecasts produced by the EnsKF.

As can be seen in Figure 2, the relationship between the ensemble members

of x1 and x2 follows a non-linear pattern and the joint distribution of {x1, x2}

is distinctively non-Gaussian. To quantify the degree of non-linearity between

x1 and x2 we performed an F-test of linearity by regressing the ensembles of

x2 on those of x1 for the 2000 forecasts. At a .05 critical level, the F-test
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Figure 2: Forecast ensemble members for {x1, x2, x3} at a given assimilation

time. Bivariate scatterplots depict local non-Gaussian behavior. The ensemble

shown produced a KS statistic of .134 (p. < 001), while a test of linearity

between x1 and x2 produced an F-statistic of 249.1 (p < .001). The lower right

plot is a histogram of the KS test statistics over 2000 assimilation cycles.
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rejects the hypothesis of linearity between x1 and x2 in 83.5% of the 2000 cases.

Clearly, the relationship between x1 and x2 is decidedly non-linear in a majority

of forecast ensembles.

Before applying the LLEnsF as described in section 3 to L40, we performed

an intermediate experiment to gauge the potential for improvement relative to

the EnsKF, given the non-Gaussian properties of the ensembles. Using the out-

put (that is, the state, observations, and forecast ensembles) from the baseline

EnsKF example, the XEnsF was applied to the sub vector {x1, x2, x3} to assim-

ilate y1 and y2 at each assimilation time. The quality of the update produced

by the XEnsF was then compared to that of the EnsKF. (Note that the results

of XEnsF were not used to modify the ensemble used in the subsequent forecast

and update step.)

The posterior mean RMSE for the EnsKF across the 2000 assimilation points

was .827 (s2 = .383). Based on L=400, N=40 and m=400, the XEnsF improved

this by roughly 8%, yielding an RMSE of .768 (s2 = .352). The improvement is

statistically significant (p < .001). Thus, the XEnsF provides, at least locally,

a better estimate of the true state of the system.

Next we apply the LLEnsF to the same sequence of states and observa-

tions as in the baseline EnsKF example, and define the observation neigh-

borhoods to consist of three adjoining state variables. Thus, at each assim-

ilation cycle, the scalar observation yj updates the observation neighborhood

x[k] = (xk−1 mod 40, xk, xk+1 mod 40), where k = 2j − 1. Using these observa-

tion neighborhoods the LLEnsF was found to be a stable filter, i.e., the posterior
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ensemble mean did not diverge from the true state during any prolonged assim-

ilation sequences. However, LLEnsF did not perform as well as EnsKF, with an

approximate 33% increase in RMSE over the 2000 assimilation cycles.

There are two reasons the LLEnsF does not perform as well as the EnsKF

in these simulations. The first is that, by assumption, observations affect the

update of only three state variables in the LLEnsF, while in the EnsKF each

scalar observation can provide information about the entire state vector. Hence,

although the LLEnsF produces an improved estimate of the state when only

spatially local information is used, the EnsKF allows the entire data vector to

impact the estimate of the state. The second reason is that samples in adjoining

neighborhoods may not be smooth. For example, posterior samples produced in

the observation neighborhood x[1] by assimilating y1 may be not be ”smooth”

with those produced in the observation neighborhood x[3] by assimilation of y2.

As discussed in Section 3.3 these limitations suggest a hybrid ensemble fil-

ter that combines aspects of the LLEnsF and EnsKF. Like both the LLEnsF

and the EnsKF this hybrid processes observations sequentially, but for each

observation it calculates two updated ensembles, one from the LLEnsF and an-

other from the EnsKF. In each observation loop of LLEnsF (with observation

neighborhoods as previously defined), we draw zu
i from XEnsF(400, 400, 40),

and xu
G,i from EnsKF. The two ensembles {zu

i } and {xu
G,i} are then combined

using (13) to produce posterior samples. With B = ΩL − ΩLGΩ−1
G ΩGL, we

apply two versions of the hybrid filter by setting A = B1/2{cov(zu
i )}−1/2, and

A =
√

trace(B)/trace{cov(zu
i )} I`, where I` represents the identity matrix of
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size ` = dimension(xL).

The first choice of A yields posterior samples with equivalent second moment

statistics to EnsKF. For this choice of A the two updated ensembles will here be

combined in a simple way: within the LLEnsF observation neighborhood, the

EnsKF ensemble is adjusted so that its mean matches the sample mean from

the LLEnsF update. In essence, the hybrid ensemble takes its mean from the

LLEnsF where that is available (since we know that the LLEnsF update pro-

duces smaller RMSE within the observation neighborhood) and uses the EnsKF

ensemble otherwise, including outside the LLEnsF observation neighborhood.

The second choice of A directly uses zu
i from LLEnsF but re-scales the sample

{zu
i } so that trace{cov(zu

L,i)} = trace(ΩL) at every data assimilation. Using

again the states and observations from the baseline EnsKF example simulation

results based on the hybrid filters are shown in Table 2.

A mean(RMSE) var(RMSE) median(RMSE)

B1/2{cov(zu
i )}−1/2 .917 s2 = .100 .848

√
trace(B)/trace{cov(zu

i )} I` .941 s2 = .142 .854

Table 2: Simulation results for hybrid filters applied to L40. The time-averaged

RMSE, var(RMSE), and median RMSE for 2000 assimilation cycles.

For both choices of A the improvement in the posterior mean estimate com-

pared to that produced by the EnsKF is statistically significant (p < .001, p <

.01), and correspond to a 5.7% and 3.2% overall error decrease. These results

demonstrate the potential of developing non-Gaussian filtering techniques for
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strongly non-linear, high-dimensional systems.

5 Summary

This paper has presented a hierarchy of nonlinear ensemble filters, each of which

employs mixtures of Gaussian distributions in its update step. These filters

range from the XEnsF, which uses a general representation of the prior distri-

bution but is computationally feasible only for systems of very low dimension -

to the LLEnsF, in which the XEnsF update is applied only in a spatially local

neighborhood of each observation - to a hybrid of the LLEnsF and the ensemble

Kalman filter.

A crucial feature of the XEnsF is the use of local covariances based on nearest

neighbors. The local covariances adapt to local linear properties of the attrac-

tor and so provide a more accurate representation of the forecast distribution

including error estimates. Accurate representation of error statistics produces

a stable filter that does not diverge as t increases, a common problem when

devising sequential Bayesian update procedures with fixed sample sizes (Künsh

2001). Previous work (Anderson and Anderson 1999) used scaled versions of the

full ensemble covariance around each center in the mixture, and so cannot adapt

as easily to local structure in the forecast distribution. One important issue in

the mixture approach is the number of nearest neighbors and the localization of

the covariance about the mixture center—a large number of nearest neighbors

may give a more stable estimate of the covariance but may be too spread out
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to reflect salient local features.

The LLEnsF and hybrid filters extend the XEnsF beyond low-dimensional

systems by restricting the update step to spatially local subspaces of the state

vector, and is consequently not subject to the problems of re-weighting mixture

components (particles) associated with high-dimensional distributions. The nu-

merical results in this work confirm that there are three-dimensional subspaces

where the mixture takes advantage of non-Gaussian structures. However, a

straightforward implementation of LLEnsF is inferior to the EnsKF because it

does not adequately blend the updates in the observation neighborhood with

components of the state vector that are unchanged.

By letting all state variables be affected by an observation, the global-to-

local adjustment presented in section 3.3 provides smooth updates (from the

EnsKF) of larger portions of the state vector yet allows for spatially restricted

non-Gaussian updates. This global-to-local adjustment forms the basis for the

hybrid of the LLEnsF and the EnsKF. In the 40-variable model of Lorenz (1996),

whose dimension is sufficiently large that the XEnsF is not feasible, the hybrid

method outperforms both the LLEnsF and the EnsKF. These ideas yield a

framework for “seamless” combination of non-Gaussian and Gaussian update

procedures, and one benefit of this synthesis would be the ability to quantify

uncertainty in the state of the system taking into account multimodality or

skewness of the forecast distribution.
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Appendix A

The L3 model (Lorenz 1963) is defined by three differential equations:

ẋ = −σ(xt + yt),

ẏ = rxt − yt − xtyt,

ż = xtyt − bzt,

where “dot” represents derivative with respect to time. The model parameters

are set as follows: σ = 10, r = 28, and b = 8
3 .

The L40 model (Lorenz 1996) is defined by the differential equations

ẋt,i = (xt,(i+1 mod k) − xt,(i−2 mod k))xt,(i−1 mod k) − xt,i + F.

Here, k = 40 and F = 8.

Both systems are propagated using a first order Euler method with a time

step of .001. This simple numerical scheme facilitates rapid propagation of a

large number of ensembles.

Appendix B

By reversing the order of the conditioning, i.e., switching the roles of xL and xG

in (11), a local-to-global adjustment can be devised, resulting in the following

specific sampling scheme



zu
L,i

xu
G,i


 =




zu
i

xG + ΩLGΩ−1
L A{(zu

i − z̄u)− (xu
L,i − x̄u

L)}


 +




0

δ̄


 , (14)
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where A and δ̄ must be chosen appropriately. Selecting A = Ω1/2
L {cov(zu

i )}−1/2,

yields cov(zu
L,i,x

u
G,i) = ΩLG.
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