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e A mixture filter

e A local- local filter
e A hybrid
e Something completely different
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Overview

Data Assimilation
Combining predictions made by a numerical model with observed data
to estimate the state of a system, . This is also called a filter.

The statistical foundation is Bayes Theorem and the uncertainty in the
state of the system is represented by a probability distribution.
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PRIOR for x + observations — POSTERIOR for ax



Effects of nonlinear dynamics

Nonlinear systems can generate assimilation problems where distribu-
tions of priors are not well represented by multivariate normals.

Lorenz 63 a simple three dimensional system

Easy to visualize, large distortion occurs for trajectories near the origin.
Ensembles are often distinctly non-Gaussian.



Following an ensemble through state space
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The Bayes cycle

Observations at time t

Yy, = Hx; + measurement error

System dynamics:

x;1 = g(a;) (deterministic)

Bayes .
p(Xt); Yy _y) p(Xt\YQ & p(Xt+1’}’t) :p<Xt+1>a Yi+1

data update forecast new data

Yesterday’s posterior becomes today’s prior!



Some key ideas:

e Represent a continuous distribution by a discrete sample.

e Non-Gaussian update for components of the state vector local to the
observation locations and close to the observation value.

e Parts of state vector far from the observation are updated using
Ensemble Kalman Filter.



Standard Kalman Filter/ conditional multivariate normal dis-
tributions

This is easy in closed form if everything is multivariate normal and
linear.

Observation Model

y=Hx;+e with e~ MN(0,R)

Prior

thMN(NmP)



Standard Kalman Filter/ conditional multivariate normal dis-
tributions

This is easy in closed form if everything is multivariate normal and
linear.

Observation Model

y=Hx;+e with e~ MN(0,R)

Prior

thMN(NmP)

Kalman update for state

z, = BE(xi|ly) = p, + PH' (HPH' + R)"'(y — Hu,)



The Ensemble KF

e All means and covariances in Kalman Filter are replaced by sample
quantities found from the ensemble.

e T he sample covariance matrix from the ensemble is tapered spatially
to regularized the estimate.

e Essentially the ensemble encodes a low rank approximation to the
mean and covariance following the exact calculation under the as-
sumption that everything is multivariate normal.



Forecast step with EnKF

In place of
p(@|yr) — plg(@)|y:)
propagate each ensemble member.

Lt 1 g<33t,1> = L4111
51335,2 g — 9(51315,2) : Lt12
Lt M g(wt,M) — Lt41,M

Note:
With no model error, the relationship among state vectors is preserved
correctly. The dynamics generates information ...



Ensemble Kalman filter and regression

Jth

Suppose we observe just the state component with noise

Y =x5+e¢

Update the i ensemble member:

z! = x! + COV(x,z,)VARY) (Y — :U,ZJ — perturbation)
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Ensemble Kalman filter and regression

Jth
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Ensemble Kalman filter and regression

Jth

Suppose we observe just the state component with noise

Y =x5+e¢

Update the i ensemble member:

z' = x! + COV(x,z;)VARY) Y — :U:ZJ — perturbation)

COV(CL‘, ZIZJ) VAR(QZJ)

Y — 2] ; — perturbati
VAR(x,) VAR(Y) X ( x; ; — perturbation)

a:g::cszr

COV(CB, CEJ)

z! = @] + X ( draw from p(x;|Y) — :z:'ZfJ)

Now substitute sample COV and sample VAR to get a linear regression.



Non-Gaussian distributions

Represent the prior distributions as mixtures of multivariate normals
k
p(xt) = xi_y piMN(pe;, P;)

The posterior distribution is also a mixture:
p(xiye) = = piMN(pf, Py)

Fach component s just the usual KF or EnKF update!



Non-Gaussian distributions

Represent the prior distributions as mixtures of multivariate normals
k
p(xt) = xi_y piMN(pe;, P;)

The posterior distribution is also a mixture:
p(xiye) = = piMN(pf, Py)

Fach component s just the usual KF or EnKF update!

Key aspect is the update of the mizture probability
o~ (y—Hp)" (HP;H' +R) ™ (y—Hp;)
(HP;HT + R)|1/2

p; is large if H,; is close to the observed value.

*
p; o~



Ensembles as a mixture distribution:

A random subset of ensemble members are the centers of the mixture.

(rer.).

The sample covariance of nearest neighbors about the center is the co-
variance (P}).

The posterior probabilities look like weights based on a normal kernel.
The use of neighborhoods to find the covariance results in a local linear
regression.



A non-Gaussian example
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Results for Lorenz '63

With a time step of .5 and observation standard deviation of 2 in the

saddle region of the state space
(400 ensemble members, 100 centers, 25 Nearest neighbors.)

RMSE Ensemble KF filter = 1.64
RMSE Mixture filter = .73



Extensions to larger state spaces
The mixture filter breaks down as the dimension of the state vector
InCreases.

e.g. the posterior probability concentrates on a single member or is small



The Local-Local Filter

LOCAL in physical space:
Only update components close to the observation location.

Call these local state components x,

LOCAL in state space:
only use ensemble members that are “close” to the observed value.

Hybrid filter

Update remaining components using EnKF.

Call these remaining (global) components xq



A 40 dimensional system: Lorenz '96

YARIABLE
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LOMNGITUDE

True state

5 ensemble members (as lines)

Local state components: 19, 20, 21

Global components of state: the rest!



How do we splice two types of solutions together?
Our first 1dea

Find the global part conditional on first finding the local posterior.

p(xly) = p(xa|lzr)p(xL|y)

p(xr|y) from local-local (non-Gaussian) filter

p(xg|xr) assuming Gaussian distributions.



How do we splice two types of solutions together?

Our first 1dea

Find the global part conditional on first finding the local posterior.

p(xly) = p(xa|lzr)p(xL|y)

p(xr|y) from local-local (non-Gaussian) filter

p(xg|xr) assuming Gaussian distributions.

This did not work ...



What worked as a hybrid filter.

Use posterior means from p(x¢|x;) and p(x;|y)
The non Gaussian gives good point predictions.



What worked as a hybrid filter.

Use posterior means from p(xg|xy) and p(xy|y)
The non Gaussian gives good point predictions.

Reverse conditioning! |xr|xq]
Posterior for ¢ is just p(xg|Y)

Posterior draw for « is ( up to the mean)

Elxi|zc] + [Ax|y]

The matrix A is chosen so that complete ensemble agrees with posterior
covariance for EnKF.



Summary

Results

e \We have some evidence that the practical version of the EnKF actu-
ally handles non-Gaussian distributions better than an exact Kalman
filter.

e The Local-Local filter clearly out performs EnKF in a simple 3-d
system especially in places where g is very nonlinear.

e A version of the L-L filter also performs better than EnKF with about

5% improvement (without any extensive tuning) for the 40 variable
model.



|ssues

e The local linear fitting seems important but it is hard to beat the
EnKF

e [he spread of the ensemble may have nothing to do with Bayes; All
that is important is to generate a good regression relationship.

e RMSE as a criterion has little to do with non-Gaussian distributions.

e Are components far away from observations more amenable to a
Gaussian update?



Better models for covariance functions

A set of 32 wavelet basis functions
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Sparseness with wavelets
Decomposition of a 1-d covariance matrix

Covariance malrix of process D
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