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Estimating a curve or surface.

The additive statistical model:

Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = g(xi) + εi

εi’s are random errors
and g is an unknown smooth function.

The goal is to estimate a function g based on the
observations
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A 2-d example

Predict surface ozone where it is not monitored.

Ambient daily
ozone in PPB
June 16, 1987,
US Midwestern
Region.
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Local linear surface estimates

Use local information to predict unobserved values

Use a linear regression based on close by observations.

yi = β1 + loniβ2 + latiβ3 + εi

find β̂ by least squares.

The prediction at location (−88,41) is just a weighted
average of the observations.

ĝ(−88,41) = β̂1 + -88β̂2 + 41β̂3 =
∑
i=1,n

wiyi
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A kernel estimator
Determine the weights based on the distance to the

prediction points

wi ∼ (1/h)K((x− xi)/h)

(and normalize so that the weights sum to one.)

Kernel: K
K is bump shaped e.g. a normal

Bandwidth: h
h controls the spread of K as h gets large the estimate
is just the average.
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Some kernel estimates for ozone
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Linear smoothers

Let ĝ = g(x1), ..., g(xn) be the prediction vector at the
observed points.

A smoother matrix satisfies
ĝ = Ay where

• A is an n× n matrix

• eigenvalues of A are in the range [0,1].

Note: ||Ay|| ≤ ||y||

Usually values in between the data are filled in by inter-
polating the predictions at the observations.
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Problems with local regression and kernels

• How large should the neighborhood/bandwidth be?

• What is the uncertainty of the prediction?

• Predicting in between observations is ad hoc and can
get weird when the error is small.
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Problems with local regression and kernels

• How large should the neighborhood/bandwidth be?

• What is the uncertainty of the prediction?

• Predicting in between observations is ad hoc and can
get weird when the error is small.

But the theoretical properties of kernel estimators are

well understood ...

E [g(x)− ĝ(x)]2 = h4K2/4 +
σ2

nh
K0

MSE= Bias2 + Variance
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Penalized least squares

Ridge regression
Start with your favorite n basis functions {ψk}nk=1 The

estimate has the form

f(x) =
n∑
l=1

θkψk(x)

where θ = (θ1, . . . , θn) are the coefficients.

Let Wi,k = ψk(xi) so f = Wθ
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Estimate the coefficients by a penalized least squares.

Sum of squares(θ) + penalty on θ

min
θ

n∑
i=1

(y − [Wθ]i)
2 + λθTBθ

with λ > 0 a hyperparameter and B a nonnegative defi-
nite matrix.
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Estimate the coefficients by a penalized least squares.

Sum of squares(θ) + penalty on θ

min
θ

n∑
i=1

(y − [Wθ]i)
2 + λθTBθ

with λ > 0 a hyperparameter and B a nonnegative defi-
nite matrix.

or in general,

- log likelihood + λ penalty on θ

In any case once we have the parameter estimates these
can be used to evaluate ĝ at any point.
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The form of the smoother matrix

Just calculus ...

• Take derivatives of the penalized likelihood w/r to θ,

• set equal to zero,

• solve for θ
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The form of the smoother matrix

Just calculus ...

• Take derivatives of the penalized likelihood w/r to θ,

• set equal to zero,

• solve for θ

The monster ...

θ̂ = (W TW + λB)−1W Ty

ĝ = W θ̂ = W (W TW + λB)−1W Ty = A(λ)y
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Why is this a smoothing matrix?

If W is symmetric

A(λ) = W (W TW + λB)−1W T = (I + λW−1BW−1)−1
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Effective degrees of freedom in the smoother

For linear regression trace A(λ) gives us the number of
parameters. (Because it is a projection matrix)

By analogy, trA(λ) is measure of the effective number
of degrees of freedom attributed to the smooth surface
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Effective degrees of freedom in the smoother

For linear regression trace A(λ) gives us the number of
parameters. (Because it is a projection matrix)

By analogy, trA(λ) is measure of the effective number
of degrees of freedom attributed to the smooth surface

A useful decomposition
Recall: A(λ) = (I + λW−1BW−1)−1

One can always find an orthogonal matrix, U so that

UTU = I and (W−1BW−1) = UΓUT

where Γ is diagonal.

A(λ) = (I + λUΓUT)−1 = U(I + λΓ)−1UT
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A simple formula for the trace

So

trA(λ) = trU(I + λΓ)−1UT = tr(I + λΓ)−1UTU

= tr(I + λΓ)−1 =
n∑
i=1

1

1 + λΓii

The Gamma’s are all nonnegative so this must be in-
creasing as λ decreases.

The relationship is one-to-one with λ and independent
of the data so we can always talk about λ in terms of
the effective degrees of freedom.
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Splines

One obtains a spline estimate using a specific basis and
a specific penalty matrix. Splines are confusing because
the basis is a bit mysterious.

The classic cubic smoothing spline:
For curve smoothing in one dimension,

min
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′(x))2dx

The second derivative measures the roughness of the
fitted curve.
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Splines

One obtains a spline estimate using a specific basis and
a specific penalty matrix. Splines are confusing because
the basis is a bit mysterious.

The classic cubic smoothing spline:
For curve smoothing in one dimension,

min
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′(x))2dx

The second derivative measures the roughness of the
fitted curve.

The solution, is continuous up to its second derivative
and is a piecewise cubic polynomial in between the ob-
servation points.

Where does this come from?
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Climate for Colorado

CO met station locations
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Cubic splines with different λ s
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Some abstraction

Reproducing kernels
Think of these as covariance functions ... k(x,x′)

To get basis functions we will hold one argument fixed at
some value of x and let the other vary.

A Space of functions
Let H be the smallest Hilbert space with inner product
〈·, ·〉 such that k(x, ·) ∈ H for all x and

〈k(x, ·), k(x′, ·)〉 = k(x, x′)

k reproduces itself!
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Some abstraction

Reproducing kernels
Think of these as covariance functions ... k(x,x′)

To get basis functions we will hold one argument fixed at
some value of x and let the other vary.

A Space of functions
Let H be the smallest Hilbert space with inner product
〈·, ·〉 such that k(x, ·) ∈ H for all x and

〈k(x, ·), k(x′, ·)〉 = k(x, x′)

k reproduces itself!

For f in H, 〈k(x, ·), f〉 = f(x) !
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A variational problem
With H and its inner product,

min
f∈H

n∑
i=1

(yi − f(xi))
2 + λ〈f, f〉

19



A variational problem
With H and its inner product,

min
f∈H

n∑
i=1

(yi − f(xi))
2 + λ〈f, f〉

The solution
Choose basis functions k(.,xi) for 1 ≤ i ≤ n

f̂(x) =
n∑
i=1

θ̂ik(x, xi)

Choose roughness penalty matrix B = W

19



A variational problem
With H and its inner product,

min
f∈H

n∑
i=1

(yi − f(xi))
2 + λ〈f, f〉

The solution
Choose basis functions k(.,xi) for 1 ≤ i ≤ n

f̂(x) =
n∑
i=1

θ̂ik(x, xi)

Choose roughness penalty matrix B = W

this gives

θ̂ = (WW T + λW )−1W Ty = (W + λI)−1y

ĝ = W θ̂ = W (W + λI)−1y = (I + λW−1)−1y

19



Covariances

Here Wij = k(xi,xj)
this looks like a covariance matrix doesn’t it.

The Proof
The main part is to use the minimum interpolation

properties of splines. It is easiest to prove this in more
generality for any reproducing kernel Hilbert space.

A simple proof is to guess at the minimizing solution
and use the optimal interpolation results to show that
there can not be another solution. – more on this later.
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A 1-d cubic smoothing spline

The key step is a decomposition: f(x) = β1 + β2x+ h(x)

min
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′(x))2dx

becomes

min
β,h

n∑
i=1

(yi − β1 + β2xi + h(xi))
2 + λ

∫
(h′′(x))2dx

H:
All functions with 2 derivatives

Inner product:
related to the integral

Usual (Wahba style) Reproducing Kernel:
k(x,x′) = |x− x′|3 + linear terms
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A less scary reproducing kernel for the same
cubic spline problem
On the interval [0,1]

Let k(u, v) = u2v/2− u3/6 for u < v

and
k(u, v) = v2u/2− v3/6 for u ≥ v

k(., v) for fixed v, is a function that is a cubic polynomial
from 0 to v and is then a linear function for u > v. It is
twice differentiable.

Let H be a Hilbert space of functions on [0,1] where
f(0) = 0 and f ′(0) = 0 and with inner product

〈f, g〉 =
∫ 1

0
f ′′(u)g′′(u)du

k is a reproducing kernel for this space!
Show this just using integration by parts.
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More on cubic splines

To be explicit the cubic smoothing spline solution has
the form:

f̂(x) = β̂1 + β̂2x+
n∑
i=1

θ̂ik(x, xi)

Besides verifying that the reproducing on the previous
page works with the integrated second derivative inner
product one can also check that it is the covariance
function for integrated Brownian motion,B(t):

X(u) =
∫ u

0
B(t)dt,

with B(0)=0. i.e.

E(X(u)X(v)) = k(u, v)

So as we will see later, the Bayesian prior associated
with the cubic smoothing spline is an integrated Brow-
nian motion.
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The last details ...

Given the reproducing kernel, the problem is

min
β,θ

||y −Xβ −Wθ||2 + λθTWθ

X is the regression matrix with columns 1 and {xi}

First minimize over θ with β fixed. Plug in solution and
then minimize over β.

β̂ = (XTΩ−1X)−1XTΩ−1y

Ω = (W + λI)

θ̂ = (W + λI)−1(y −Xβ̂)
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A 2-d thin plate smoothing spline

min
f

n∑
i=1

(yi − fi)
2 + λ

∫
<2

(
∂2f

∂2u

)2

+ 2

(
∂2f

∂u∂v

)2

+

(
∂2f

∂2v

)2

dudv

Collection of second partials is invariant to a rotation.

Again, separate off the linear part of f.
f(x) = β1 + β2x1 + β3x2 + h(x)

Reproducing Kernel:

k(x,x′) = ||x− x′||2log(||x− x′||) + linear terms

leading to basis functions that are bumps at the obser-
vation locations.
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Some thin plate splines for the ozone data
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The interpolation problem: a editorial

Splines arose in numerical analysis with the interpolation
problem:

Find a curve g that minimizes
∫
(g′′(x))2dx ,

subject to g(xi) = yi

27



The interpolation problem: a editorial

Splines arose in numerical analysis with the interpolation
problem:

Find a curve g that minimizes
∫
(g′′(x))2dx ,

subject to g(xi) = yi

We already know how to do this by letting λ→ 0

• Statisticians are, of course, suspicious of fitting data
exactly

• 1-d splines have some very fast computational prop-
erties – that do not extend to higher dimensions!

• Assuming a reproducing kernel is equivalent to a model
for the unknown function. What is that model?
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The general interpolation problem

Given {xi, yi} and a reproducing kernel Hilbert space.

Find a function g in the space so that minimizes 〈g, g〉.

subject to the constraints g(xi) = yi, 1 ≤ i ≤ n

The solution

g =
n∑
i=1

θik(., xi)

Where θ is determined by solving a system of n linear
equations to guarentee the interpolation constraints.
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Interpolation Proof

Suppose

g =
n∑
i=1

θik(., xi)

interpolates {xi, yi} and so does some other function h.

We will show that 〈h, h〉 > 〈g, g〉.

Let δ = h− g and so 〈δ, δ〉 > 0

〈h, h〉 = 〈g+ δ, g+ δ〉 = 〈g, g〉+ 2〈g, δ〉+ 〈δ, δ〉

The cool part, using the reproducing property

〈g, δ〉 = 〈
n∑
i=1

θik(., xi), δ〉 =
n∑
i=1

θi〈k(., xi), δ〉 =
n∑
i=1

θiδ(xi) = 0

because δ(xi) = h(xi)− g(xi) = yi − yi = 0.
So 〈h, h〉 = 〈g, g〉+ 〈δ, δ〉 > 〈g, g〉 Done!
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A proof of the smoothing spline solution

The proof is by contradiction and uses the interpolation result.

Let ĝ be the smoothing spline obtained as a linear combination of the
kernel basis functions and possibly a linear or low order polynomial. This
is found as a penalized smoother by plugging this form into the penalized
least squares criterion and minimizing by ordinary calculus.

Suppose there is an h that has a smaller penalized least squares than ĝ.

Construct a g that interpolates h at the xi and uses the same basis
functions as ĝ. By the interpolation result we know that 〈h, h〉 > 〈g, g〉
and since both h and g have the same residuals sums of squares the
penalized least squares criterion will be smaller for g. Thus , h can not
be a minimizer.

Because ĝ however, has the same form as the interpolant and minimizes
the criterion. Thus it must in fact be the minimizer over all functions in
the Hilbert space.
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Choosing λ by Cross-validation

Sequentially leave each observation out and predict it
using the rest of the data. Find the λ that gives the
best out of sample predictions.

Refitting the spline when each data point is omitted,
and for a grid of λ values is computationally demanding.

Fortunately there is a shortcut.

The magic formula
residual for g(xi) having omitted yi

(yi − ĝ−i) = (yi − ĝi)/(1−A(λ))i,i

This has a simple form because adding a data pair
(xi, ĝ−1) to the data does not change the estimate.
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CV and Generalized CV criterion

CV (λ)

(1/n)
n∑
i=1

(yi − ĝ−i)
2 = (1/n)

n∑
i=1

(yi − ĝi)2

(1−A(λ))i,i)2

GCV (λ)

(1/n)

∑n
i=1(yi − ĝi)2

(1− trA(λ)/n)2

Minimize CV or GCV over λ to determine a good value
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GCV for the ozone data

GCV( eff. degrees of freedom), the estimated surface
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GCV for the climate data

GCV( eff. degrees of freedom), the estimated surface
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Summary

We have formulated the curve/surface fitting problem as pe-
nalized least squares.

Splines treat estimating the entire curve but also have a finite
basis related to a covariance function (reproducing kernel).

One can use CV or GCV to find the smoothing parameter.
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Thank you!
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