A South Boulder guide to spatial statistics

Douglas Nychka Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research

Outline

- Filling in between observations
- A statistical model and one that isn't
- The covariance is everything
- Don't obsess about the covariance
- Other things to do.

An example: Daily ozone pollution

Here are the 8-hour average ozone measurements for June 19,1987.

What can we say about ozone at (-88,41)?

Use local information to predict unobserved values

One reasonable method is to predict the location using a linear regression based on close by observations.

$$z_k = \beta_1 + \mathsf{lon}_k \beta_2 + \mathsf{lat}_k \beta_3$$

find $\hat{oldsymbol{eta}}$ by least squares

$$\hat{z} = \hat{eta}_1 + -88\hat{eta}_2 + 41\hat{eta}_3 = w_0 + \sum_{k=1,n} w_k z_k$$

Problems with local regression

How large should the neighborhood be?

What is the uncertainty of the prediction?

How much does the surface depart from a plane?

Spatial models deal with these problems by adding a stochastic model for the underlying surface.

A Normal World

Suppose z(x) is the ozone concentration at location x, We assume that z(x) is a Gaussian process, E(z(x)) = 0

$$k(\boldsymbol{x}, \boldsymbol{x}') = COV(z(\boldsymbol{x}), z(\boldsymbol{x}'))$$

Being a Gaussian process has the practical consequence that *any* discrete subset of the fields has a multivariate normal distribution.

If we know k we know how to make a prediction at \boldsymbol{x}^* !

$$\hat{z} = E[z(\boldsymbol{x}^*)|data]$$

i.e. Just use the conditional multivariate normal distribution.

A review of the conditional normal

$$\boldsymbol{z} \sim N(0, \Sigma)$$

and

 $\Sigma = COV(\boldsymbol{z})$

$$oldsymbol{z} = egin{pmatrix} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{pmatrix} \ \Sigma = egin{pmatrix} \Sigma_{11}, \Sigma_{12} \ \Sigma_{21}, \Sigma_{22} \end{pmatrix}$$

$$[\boldsymbol{z}_2|\boldsymbol{z}_1] = N(\Sigma_{2,1}\Sigma_{1,1}^{-1}\boldsymbol{z}_1, \ \Sigma_{2,2} - \Sigma_{2,1}\Sigma_{1,1}^{-1}\Sigma_{1,2})$$

The distribution of z_2 (unobserved locations) given z_1 (the observations).

The Kriging weights

Conditional distribution of z^* given the data z is Gaussian. Conditional mean

$$\hat{z^*} = COV(\boldsymbol{z}^*, \boldsymbol{z}) \left[COV(\boldsymbol{z}, \boldsymbol{z})\right]^{-1} \boldsymbol{z} = \sum_{k=1,n} \omega_k z_k = \boldsymbol{\omega}^T \boldsymbol{z}$$

 $\boldsymbol{\omega}$ are the Kriging weights. *Note:* $COV(\boldsymbol{z}, \boldsymbol{z})$ is an $N \times N$ matrix, $COV(\boldsymbol{z}^*, \boldsymbol{z})$ an N row vector. *Conditional variance*

 $VAR(z^*, z^*) - COV(z^*, \boldsymbol{z}) [COV(\boldsymbol{z}, \boldsymbol{z})]^{-1} COV(\boldsymbol{z}, z^*)$

My geostatistics/BLUE overhead

For any covariance and any set of weights (not just ω) we can easily derive the prediction variance for z^* .

Minimize

$$E\left[(z^* - \hat{z^*})^2\right] = VAR(z^*, z^*) - 2COV(z^*, \boldsymbol{z})\boldsymbol{w} + \boldsymbol{w}^T COV(\boldsymbol{z}, \boldsymbol{z})\boldsymbol{w}$$

over all w.

The answer

The Kriging weights ... or what we would do if we used the Gaussian process and the conditional distribution.

Folklore and intuition

The spatial estimates are not very sensitive if one uses suboptimal weights, especially if the observations contain some measurement error. It does matter for measures of uncertainty.

Surfaces

The conditional normal tell us how to predict onto an entire grid given the observations. ($z_2 =$ grid , $z_1 =$ obs.)

Recall:

$$[\boldsymbol{z}_2|\boldsymbol{z}_1] = N(\Sigma_{2,1}\Sigma_{1,1}^{-1}\boldsymbol{z}_1, \ \Sigma_{2,2} - \Sigma_{2,1}\Sigma_{1,1}^{-1}\Sigma_{1,2})$$

• The estimated surface has the equivalent form:

$$\hat{z}(x) = \sum_{k=1,n} c_k k(\boldsymbol{x}, \boldsymbol{x}_k)$$

k the covariance function and c are estimated from the data by solving a linear system of equations.

- We have the *full* distribution for the surface on the grid.
- With some measurement error $(\Sigma_{1,1} \text{ replaced by } \Sigma_{1,1} + \sigma^2 I)$ the conditional mean is a smoother ... but not exactly a kernel estimator or a local linear regression.

Something different

Isn't this is just about curve fitting?

Given $\{x_i, z_i\}$ find a surface that passes through the points.

$$\hat{z}(x) = \sum_{k=1,n} c_k \psi_k(\boldsymbol{x})$$

just solve these equations for c.

But how should we choose the basis $\{\psi_k\}$?

A common approach is to use radial basis functions. For example,

$$\psi_k(\boldsymbol{x}) = \phi(||\boldsymbol{x} - \boldsymbol{x}_k||)$$

and

$$\phi(r) = r^2 log(r)$$

But this seems arbitrary ...

Dodging the question.

Instead of choosing the basis functions use abstraction to weasel out of giving an direct answer.

Find a function f(u,v) that minimizes the integral

$$\int_{\Re^2} \left(\frac{\partial^2 f}{\partial^2 u} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial u \partial v} \right)^2 + \left(\frac{\partial^2 f}{\partial^2 v} \right)^2 du dv$$

over all functions so that $f(u_i, v_i) = z_i$.

This is a variational problem in a Hilbert space. The integral is liken to the bending energy of a thin plate deformed to pass through the data points.

Is this solution even computable?

Covariance? The variogram.

The preceding discussion is useless without estimating the covariance function (k).

We have to make some assumptions on k to use just one field. Assume that $z(\pmb{x})$ is stationary and isotropic.

$$k(x, x') = \phi(||x - x'||)$$

||.|| great circle distance and we identify ϕ using EDA. The key is the variogram:

$$E[1/2(z(x) - z(x'))^{2}] = \phi(0) - \phi(||x - x'||)$$

At last! A form we can estimate directly from the observations.

The matern class of covariances

Not any old ϕ will give a valid covariance function. A useful family has four parameters:

$$\phi(d) = \sigma(1 - \alpha * \psi_{\nu}(d/\theta))$$

 ψ_{ν} is an exponential for $\nu = 1/2$ as $\nu \to \infty$ Gaussian.

d

Same models but as variograms

The smoothness properties of the spatial field depend on how smoothly the variogram approaches zero as $d \rightarrow 0$.

Variogram for ozone data - Day 16

What a mess!

Binning the variogram

Boxplots of squared values in bins with mean added.

Fitting the variogram

Assume an exponential covariance

In this case $\theta = 1200$, $\sigma = 49.8$ and $\alpha = .11$ (I don't believe these)

Using the temporal information

In many cases spatial processes also have a temporal component. Here we take the 89 days over the "ozone season" and just find sample correlations among stations.

correlogram

dist

Mean and SD surfaces

Covariance model:

$$k(\pmb{x}, \pmb{x}') = \sigma(\pmb{x})\sigma(\pmb{x}')exp(-||\pmb{x}-\pmb{x}'||/\theta)$$

Mean model:

 $E(z(\boldsymbol{x})) = \mu(\boldsymbol{x})$

where μ is also a Gaussian spatial process.

The data for day 16 and the conditional mean surface

Five samples from the posterior

Beyond the covariance

The covariance is rarely of interest on its own.

Some other issues related to finding reasonable posterior distributions of the field

- Handle large numbers of observations
- Nongaussian distributions, robust methods.
- Include temporal as well as spatial dependence.
- Propagate uncertainty in *all* components of the model to uncertainty in field

Examples of useful directions

Dependence over time: $z(\boldsymbol{x},t) = \rho(\boldsymbol{x})z(\boldsymbol{x},t) + u(\boldsymbol{x},t)$

Where $u(\boldsymbol{x}, t)$ are spatial processes uncorrelated in time.

Design:

If the EPA had to reduce the ozone monitoring network by half how should the stations be thinned?

Conclusions

A primary activity in spatial statistics is to develop a (stochastic) model for the unknown surface.

Inferring covariance models from data can be difficult especially when only a single field is available.

The covariance function is an important part of the model but usually not an end in itself.