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• National Assessment

• Climate Models (PCM)

• Crop Models (CERES)

• Weather (WGEN)

• Yields for corn in NC/SC



National Center for Atmospheric Research

≈ 1000 people total, several hundred PH D (physical) scientists,
half the budget (≈ 60M) is a single grant from NSF-ATM

Research on nearly every aspect related to the atmosphere

Climate, Weather, the Sun, Ocean/atmosphere, Ecosystems, Economic impacts,
Air quality, Instrumentation, Scientific computing and ...

Statistical methods for the geosciences



National Assessment

The Assessment was called for by a 1990 law.

Purpose:
“ to synthesize, evaluate, and report on what we presently know about the
potential consequences of climate variability and change for the US in the 21st

century. ”

Report of the National Assessment Synthesis Team:
Climate Change Impacts on the United States(2001)

A formidible document,> 500 pages



From one senario, the summer temperatures in Atlanta would be shifted to those
more like the current Florida panhandle.
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Hardly any estimates or discussion of uncertainty!



Why are we doing this?
Premise:Global warming is occurring ... and most scientists attribute some of
the warming to increasing levels of greenhouse gases.

Problem: Translate geophysical predictions of climate change into terms of
daily weather. How do (sometimes subtle) changes in weather effect society,
the economy and the environment.

Climate are the averages of ”weather” over long time scales.

Climate(x) = E[weather(x)]



A big change of variables problem:

Given the (multivariate) distribution of weather at a location determine the
distribution of the impact model outputs.

Strategy:Build weather generators from observational data and climate change
senarios. Feed generated weather to numerical,impact models to assess the
effects of a changing climate.

e.g. To determine the impact on agricultural yields, create weather inputs and
run a crop model. In this talk we present results for corn yields from the CERES
model for North and South Carolina.



Where is the Statistics?
Statistics has a role to play in:

• Building suitable weather generators.
Multivariate time series with (0,1) components, Spatial models for non-
Gaussian fields.

• Propagating uncertainties in the models to uncertainty in the final result.
Experimental design, Bootstrapping.



A snapshot of a climate model

How do they do it?



Modeling the atmosphere
The physical equations to describe atmospheric motion are derived from fluid
mechanics and thermodynamics.
The complete state depends on:

• 3-d wind field,v

• pressurep

• temperatureT

• heating by radiationQrad, condensationQcon

• evaporationE and condensationC from clouds

• DH DM andDq are diffusion terms.



Primitive Equations
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whereΦ geopotential (height) andω = dp
dt

.
Despite the precision of this physical description, the radiative and cloud terms
involve complicated additional physics.
see Berliner (2001)



Climate System Model (CSM)

General Circulation Model (GCM):A deterministic numerical model that de-
scribes the circulation of the atmosphere by solving the primitive equations in a
discretized form.

• Conceptually based on grid boxes ( for the NCAR climate system model:
there are128 × 64 × 17 ≈ 141K ) and the state of the atmosphere is the
average quantities for each box (≈ 1M real numbers).

• Each grid cell is large (for NCAR CSM/PCM≈ 300km× 300km) in area
and so important processes that affect large scale flow are not resolved by
the grid.

• GCM must be stepped on the order of minutes, even for a 200+ year numer-
ical experiment!

Climate SystemA GCM coupled to models for the ocean, ice , land, chemistry,
etc. to model the entire climate system. Coupling these components without
overt flux adjustments is a recent achievement of the modeling commmunity.



Crop models
CERES corn model: A numerical model that simluates the daily growth of a
corn crop based on

• Soil type/layers, Latitude

• Cultivar

• Farming practice

• Daily weather: max/min temperature, solar radiation,

• Initial conditions precipitation



Average corn yield (Kg/Ha) using observed daily weather 1965-1984
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Spatial sequence of yields
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Statistical problem (again)

How can we simulate spatial and temporal patterns of yeilds under a senario of
climate change? How can we simluate yields for locations where observational
data is not available?.



Weather
A climate model has limited spatial resolution and possible biases. The goal is
to simulate daily weather consistent for a particular location but use the climate
model to inform these simulated values.

Some approaches:

• Feed GCM results into a finer resolution regional model that uses the GCM
values as boundary conditions. ( e.g. RegCSM from MM4).

• Build a weather generator, a multivariate timeseries model based on obser-
vational data but modified by statistics from the GCM results.



Weather generators

WGEN Richardson (1981), Parlange and Katz (1999)
SetZt to be the daily weather variables. Essentially a multivariate time series
model for

• Precipitation: occurrence, amount
This talk will concentrate on occurrence.

• Solar Radiation

• Daily average temperature and range

• Humidity and Wind speed



The key is toseparate the model into dry and wet days.



Weather for first 200 days for station 1 conditioned by occurrence
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A model for precipitation occurence

OccurenceYt = ( 0 or 1) follows an observation driven model:

P (Yt = 1) = pt

wherept depends on past values ofY and seasonality.

LetU , be a uniform R.V. on[0, 1]:
if U > pt no rain, if U ≤ pt rain

Modeling Hierarchy:

logit transformation pt = eθt/(1 + eθt)

seasonality and memoryθt = xtβ + εt

means depend on pastεt = α(Yt−1, Yt−2) + δUt−1

innovations depend on pastUt−1 = (Yt−1 − pt−1)/
√
pt−1(1− pt−1)



Evaluate the occurence model by checking the distribution of “wet spells”
against the observed station data. (black= model red= data)
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Generating Precip Amount, Solar radiation, temperature, etc.

Given that it has rained, the rainamounts are assumed to follow a Gamma
distribution where the gamma parameters vary over season.

Condition on occurrence, find (seasonal) transformations of the variables to
standard normals.ut = Γt(Zt).
Γ based on best fitting Gamma distribution followed by a (nonparametric)
spline transformation.

ut evolves according to a (seasonal) AR 1.

ut = Atut−1 + et



Adding spatial structure

Spatial dependence

How does one add stochastic structure that is coherent over space?

Precipitation occurrence:

P (Yt(x) = 1) = P (Ut(x) > pt) = P (Ωt(x) > F−1(pt))

with Ut a correlated spatial process with marginals that are uniform.

We assume thatΩt(x) = F−1(Ut(x)) a Gaussian spatial processF ∼ N(0, 1).

AR 1 innovations:
Assume thatet(x) is a multivariate Gaussian spatial process.

Extrapolating parameters

Smooth or interpolate weather generator parameters over space, using func-
tional data methods for the transformations.



A digression: Details for spatial precipitation occurrence

Recall that given apt we would generate precip according to whether a uniform
R.V. is less thanpt. We want to look at the dependence among these (latent)
uniforms for the different stations.

The useful idea is to simulate uniforms for each day and station consistent with
the estimated probablity and also the actual data.



Observed occurences andpt for stations 1 and 2
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Observed occurences andpt for stations 1 and 2
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Bivarate relationship between latent variables
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Correlations among all stations against distance
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Shifting station 4 record by one day.
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What does this process look like?

A simulated example,pt surface (25-jan-1961) and the random surface
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Implied occurrence field

With nugget and transformed to Uniform, the occurrence surface
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Results from forcing corn models
Distribution of yields (1965-1984): True, simulated
Using the weather generator fit to the observed data, a realization of crop yeilds
over time and space. (These are preliminary!)
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Spatial distribution from simulated weather
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Discussion
• The seemly straightforward exercise of building a weather generator poses

new statistical models.
e.g. functional data, NonGaussian, Space-time Processes

• Useful to find statistical properties of yields and agregated over counties.

• Incorporate hidden Markov models for large scale structure in precip. (
Bellone, Guttorp, Hughes)

• Important to extend analysis to (crop) model uncertainty and uncertainty in
the soils.

• Developing and posting WGEN inR or Swill make it more accessible.

• This is really fun!


