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Abstract

Historical records of weather such as monthly precipitation and temperatures from the last

century are an invaluable database to study changes and variability in climate. These data

also provide the starting point for understanding and modeling the relationship among climate,

ecological processes and human activities. However, these data are irregularly observed over

space and time. The basic statistical problem is to create a complete data record that is

consistent with the observed data and is useful to other scientific disciplines. We modify the

Gaussian-Inverted Wishart spatial field model to accommodate irregular data patterns and to

facilitate computations. Novel features of our implementation include the use of cross-validation

to determine the relative prior weight given to the regression and geostatistical components and

the use of a space filling subset to reduce the computations for some parameters. We feel

the overall approach has merit, treading a line along computational feasibility and statistical

validity. Furthermore, we are able to produce reliable measures of uncertainty for the estimates.

Keywords: Bayesian Spatial Interpolation, Cross-validation, Prediction, Geostatistics.

1 INTRODUCTION

Understanding climate variability and its effect on environmental processes is important not only

to increase our scientific understanding of the earth system but also to assess the impact of a
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changing climate on society. Historical records of weather such as monthly temperatures and

precipitation from the last century are an invaluable database to study changes and variability in

climate. These data also provide the starting point for understanding and modeling the relationship

among climate, ecological processes and human activities. Unfortunately, even in regions relatively

rich in climate data (such as in the United States and Europe), station records often have gaps

and extensive missing periods. However, many scientific activities related to climate change and

variability require temporally-complete climate series that properly represent temporal variability

at key time scales (monthly to centennial) and preserve the point location nature of climate records.

Thus, the basic statistical problem is to create a complete, or an infilled, version of the data record

that is consistent with the observed data and is useful to researchers in other disciplines.

As an example of the pattern of missing observations over time we plot a typical station in

Figure 1. The July time series of total precipitation in millimeters for Arco, in south-central Idaho,

(Station ID#: 100375), is plotted with ×’s to indicate missing months. In this case there are 67

years of data observed in the 78 year time period 1920-1997. Our goal is to estimate the total

precipitation for each July in the years 1895-1919 and for the 11 years beyond 1920 with missing

July observations.

1.1 Scientific Need

An example of the pervasive need for climatological analysis of the US is the National Assessment

(NAST, 2001) produced for the US Global Change Research Program. This study was mandated by

an act of the US Congress to report on the impacts of climate change on the US. The assessment’s

conclusions (page 537, items 8 and 10) highlight the need for improved long term data sets and

methods that address uncertainty in such data. An infilled record of historical monthly meteorology

for the US is a useful tool for nonstatisticians who examine climatic changes and variability because

impacts are assessed at a local level and so point data are preferred. An infilled time series, carrying

all the caveats of being partially estimated as opposed to completely measured, is a still a valuable

product. The unique contribution of a statistical approach is the companion quantification of

the uncertainties of the infilled portion. At a more technical level, large numerical models that

simulate the Earth’s climate system, atmosphere/ocean general circulation models (AOGCM), are

tested by their ability to reproduce the past climate. AOGCMs are the primary tool for predicting

future changes in climate and their ability to reproduce past climate is an important measure of

their validity. For the purposes of model comparison, an infilled dataset along with measures of
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uncertainty is a primary reference to evaluate model results.

A more intrinsic need for completed observational data is as the input to ecological and biogeo-

chemical models. In order to quantify the relationship between climate and ecological processes, nu-

merical models are built to determine the response of vegetation and soil nutrients due to changes in

meteorology. As an example, CENTURY (http://www.nrel.colostate.edu/projects/century5/)

is a general model of plant-soil-nutrient cycling that is used to study the dynamics of carbon and

nutrients in a variety of ecosystems. As CENTURY is run, it requires temperature and precipi-

tation on a monthly time scale as a subset of its inputs. Important baseline experiments are to

run these models using the observational record as inputs. For example, interannual and decadal

variation in climate strongly controls variation in the structure of ecosystems and the movement

of carbon and water through the terrestrial biosphere. These processes in turn control more direct

influences such as agricultural production, occurrence of wild fires, carbon sequestration, and urban

water supply. Adequate representation of climate variation is crucial to have confidence in analysis

and modeling of these relationships (e.g., Schimel et al. 2000, Kittel et al. 1997).

1.2 Creating Complete “Data Sets”

We focus on the statistical problem of estimating missing monthly precipitation measurements for

an observational network of more than 10,000 stations. Situations similar to this, a large observation

network but irregularly observed data on that network, are quite typical in historical records of

geophysical data. The main hurdles here are the irregularity of the observations and nonstationary

behavior over both space and time. While these features demand careful statistical modeling, one

is limited in sophistication by the large size of typical geophysical datasets. Thus, the challenge and

focus of this work is to find a balance between adequate statistical models and efficient methods

that allow for processing the data in a reasonable amount of time, provide efficient estimators and

companion measures of uncertainty. Although this work deals with monthly precipitation, this

spatial approach is flexible and will be useful for other meteorological fields, such as temperature,

and other large spatial problems.

High-quality, high-resolution temperature and precipitation data products for the coterminous

United States are now available for use in a variety of natural resource, agricultural, and hydrological

modeling and assessment activities (USDA-NRCS 1998; Daly et al 2001). However, these data

sets are climatological means only (typically means from the time period 1961-90), and do not

adequately reflect the rich structure of climate variability and trends contributing to these means.
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An earlier investigation (Kittel et al. 1997, 2000) generated a complete spatio-temporal climate

data set for the coterminous US . However, they used fewer stations and a simpler infill method than

presented here. Furthermore, this effort did little to quantify infill errors. Although the Historical

Climatology Network provides largely complete, long-term station data for the coterminous United

States (Karl et al 1990), it is limited to approximately 1,200 stations, with locations that are

biased toward low elevations. Meteorology at higher elevations is important because it may be

more sensitive to a changing climate and because a significant portion of carbon sequestration and

seasonal water storage occurs at higher elevations (Kittel et al. 2002, Schimel et al, 2002).

The construction of “data products” from raw observational data is a common activity in the

geophysical community and comes from the recognition that complicated data sets require nontrivial

preprocessing, quality control and analysis to be useful for further scientific investigation. We

believe that statisticians can contribute to these efforts by not only helping to transfer advanced and

efficient statistical methods, but also by deriving measures of uncertainty when data are interpolated

over space or infilled over time. Thus, the motivation behind our work was not only to provide good

predictions of precipitation, but also to quantify the uncertainty of the infilled values. A natural

way to quantify uncertainty is with the posterior distribution from a Bayes model. However, one

goal of our modeling was that credible intervals derived from the posterior distribution would also

have good frequentist properties. Beyond standard errors for individual predictions, our methods

are also well suited to sampling from the full multivariate posterior. This method, also known as

conditional simulation in geostatistics, provides a physically realistic field that is consistent with the

observations. These conditional simulations can be used to generate an ensemble of possible inputs

for the ecological and climate models, which will give a better understanding of the variability of

predictions from these models.

In this work we focus on spatial prediction at station locations where data are missing. This

is a different problem than prediction at arbitrary locations. Although a station location may not

have data at a particular time, data at other periods may exist that allow sample estimates of the

covariance between that station and its neighbors. For arbitrary locations one must rely on a model

to infer covariance structure. Although we do not address directly the interpolation/extrapolation of

precipitation to a regular grid, the basic infilling method is a major step in the process of developing

temporally and spatially complete climate datasets (Kittel et al. 1997). The subsequent step of

extrapolating station data to a fine grid in this project was accomplished using a terrain-based

model. We briefly discuss this extrapolation in Section 2.1 and details are found in (Daly et al.
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2002).

1.3 Regression Versus Kriging

As background to the Bayesian approach, we first distinguish between two common methods used

to infill (predict) missing values: nearest neighbor regression methods (NNR) and geostatistical

models (GS). Both of these methods have advantages and the strength of the Bayesian model used

in our work comes from the synthesis of these two methods into a single approach.

Infilling via NNR methods is generally carried out by selecting a set of locations which are close

to the locations of interest. Infilled values are typically weighted averages of the observations in

the neighborhood. The weights are computed by a variety of methods including inverse distance

(Shepard, 1968) and some variants (Legates and Willmott, 1990), kriging (Haas, 1990), and simple

or robust polynomial regression (Rajagopalan and Lall, 1998). The regression approach is appeal-

ing for its simplicity and predictive ability. One regresses a station’s set of measurements on its

neighboring values for time periods when all data are complete. For periods when station data are

missing, they are simply predicted from the regression relationship using the neighboring values.

The advantage of this approach is that it adapts to each station location. However, in many cases,

NNR methods are hindered by ad hoc weighting schemes and short records in the case of regression.

Furthermore, the regression techniques are not suited to spatial prediction at locations that are not

part of the observation network.

As an alternative, geostatistical methods (Cressie 1993, Stein 1999) rely on a covariance model

for the field of interest and derive prediction weights based on the assumed covariance model. Be-

cause the predictive weights for the observations depend on the covariance model, infilling efficiency

is closely related to accurate modeling of covariances. Typical parametric models for spatial co-

variances, such as the Matern family, are not expected to hold for a large heterogeneous domain

such as the coterminous United States. Non-parametric methods for estimating covariances are

also available, (Sampson and Guttorp, 1995, Higdon et al. 1999), however, these approaches are

infeasible for data sets with large numbers of station locations.

This analysis combines an Empirical Bayes implementation of a model similar to that in Brown

et al. (1994) mixed with the neighborhood ideas in Haas (1990, 1995). The basic elements of

the model include the usual assumptions of a multivariate normal distribution of the field and an

inverse Wishart prior on the spatial covariance. The appeal of this model is that the predictor is

a mixture of regression and geostatistical methods and allows the model to inherit the strengths
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of both procedures. While this basic model is not new, our empirical implementation has several

novel features. These include the use of cross-validation to determine the relative weight given

to the regression and geostatistical components and the use of a local window that allows for

nonstationary fields. We feel the overall approach has merit, marrying computational feasibility

and statistical validity. Furthermore, we are able to produce reliable measures of uncertainty for

the infilled estimates.

Formally, the reader may identify the infilling problem or the interpolation to a grid as a

nonparametric regression. Given irregular data in two dimensions, estimate a smooth surface that

describes the full field. With this connection one could use generic surface fitting methods such as

kernel estimators or local regression (e.g. loess) to predict the infilled values and we expect with

suitable tuning such methods may do as well as spatial statistical approaches. The disadvantage

of these methods is that it is difficult to derive reliable measures of the estimator’s uncertainty.

A hybrid estimator is a thin plate spline being interpretable as both a numerical interpolation

method and a spatial statistics estimator (Nychka 2000). Although we use thin plate splines in

some instances where it is difficult to estimate a full covariance function, we felt that the generalized

covariance model assumed in the thin plate spline formulation is too limited for the precipitation

field itself.

The first step in our analysis is to transform and standardize the precipitation totals (Section 2).

Subsequent spatial modeling and prediction is applied to these standardized anomalies, with each

calendar month considered separately. Our infilling approach relies on a Bayesian model described

in Section 3 and yields an approximate posterior distribution for the missing observations given

a small number of neighboring observations. Details of the nearest neighbor criteria we used are

given in Section 3.1 and the infill algorithm is outlined in Section 3.2. In Section 4 we discuss

specification of the model and prior parameters specific to the analysis of the precipitation data.

Results and discussion are in Sections 5 and 6 respectively.

2 DATA AND PRELIMINARY ANALYSIS

The weather observation record for the United States is based on a combination of different types

of stations, ranging from consistent, unbroken recordings at population or scientific centers to often

more sporadic measurements made by cooperative observers. We started with 17,405 stations across

the contiguous United States providing some records over the period January 1895 to December

1997. The variable of interest is total monthly precipitation recorded in millimeters. Data originally
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came from the National Climatic Data Center (NCDC) and have passed a quality control system

there that includes only monthly data that are completely observed. The data in this study were

also rechecked as part of the PRISM analysis system.

Spatial coverage is sparse in the early years. For example, in January 1895, the beginning

of our analysis window, only 851 of the stations are reporting whereas January 1964 has 7921

recorded observations. Overall, there is a rapid growth in the size of the observation network in the

1940’s with the total number of reporting stations reaching a maximum in the early 1960’s. The

station density partly reflects the density of population and does not have uniform geographic (or

geophysical) coverage.

Many stations have very short periods of record, and we eliminated stations with less than 10

years observed in each calendar month. This reduced the total number of stations to 11,918, but

only reduced the total number of observations by less than 5%. In part, this reduction improved

the chances of overlapping time series between most stations. Although this reduction may seem

severe, the relative loss in observations is only about 3% for most months. The exceptions are in

the period 1949-1951, where the loss is about 15%. Even though 15% may seem extreme, most of

these stations are in locations where the spatial density is already high, so there is little practical

loss in the spatial resolution of the data set.

Eliminating these station records improved the overall quality of the data product because

inclusion of these stations would have changed the overall infill percentage (data in the final product

that are estimated, rather than observed) to 69%, rather than 57%. Furthermore, these stations

would not be used as neighbors in the infill step (see Sections 3.2 and 3.3) because of the short time

record and would have little impact on the final output for the stations included in our analysis.

Even with this reduction in stations, this is still a much larger data base than is typically used for

climate change studies. For example, the historical climate network of Karl et al. (1990) consists

of 1,221 stations with long records that are adjusted for urban influences and is a subset of the

stations used in our work.

Given the current interest and development of statistical models for space/time processes it

may come as a surprise to the reader that we do not exploit such models for monthly precipitation.

Empirical results indicate that on a monthly time scale there is little dependency between successive

monthly totals. For example, average station correlation of the December anomalies with the

previous November anomalies is 0.14, and other monthly pairwise comparisons were even smaller.

Furthermore, the spatial distribution of the “large” auto-correlations followed no obvious spatial
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pattern. It did seem evident that some correlations (≈ 0.1), were present but ad hoc analysis

showed that spatio-temporal models would reduce the mean-squared error by 1-2%.

A simple example illustrates this point. Let wt = (xt, yt)T be a bivariate random variable under

the autoregressive model wt = δwt−1 + zt where zt are mean zero, correlated normal vectors. such

that zt+k and zt are independent for k 6= 0. Then, it is easy to show that E(yt|xt−1, xt, xt+1) =

E(yt|xt). Furthermore, it is an exercise to show that E(yt|yt−1, xt, yt+1) ≈ E(yt|xt) when δ �

cor(z1t, z2t). Thus, ignoring the temporal aspects can be justified when strong spatial effects are

accounted for. As a practical matter, for many of the infill cases, records from the previous and

following months are not available and therefore a model that includes a temporal component

will not improve the estimates. Because of the apparent lack of strong temporal correlation, as

compared to spatial correlation, we developed the methodology for infilling missing observations

using only observations which are contemporaneous in the month of interest. That is, to infill a

particular station record for any July in the years 1895-1997, we only use the records from the Julys

in those years, but not any June or August information. For completeness we suggest an extension

useful for correlated data in the discussion of Section 6.

2.1 Estimates of Mean Monthly Total Precipitation Based on PRISM

Precipitation in general is a highly variable spatial process and spatial predictions benefit from

centering predictions about a mean surface. These values are referred to in atmospheric science as

the climatology and could be estimated at a station by the month-by-month means of the observa-

tions. However, we draw on past research to use a climatological mean field that incorporates more

geophysical structure. Daly et al. (2002) and Gibson et al. (1997) describe PRISM (Parameter-

elevation Regressions on Independent Slopes Model), a climate mapping system that produces

high-resolution maps of precipitation and other meteorological variables using point data, a digital

elevation model, and other spatial data sets. An extensive PRISM analysis yielded monthly cli-

matological precipitation means for each of the 11,918 stations based on 30 year period 1961-1990.

We used this as the baseline climatology. However, because of slowly varying climate patterns and

because PRISM did not use station data outside the 1961-1990 time window, we found that in

a small number of cases the PRISM means did not correspond closely with the observed means.

Such a discrepancy leads to biases that can be detected when cross-validation is used to assess the

infilling accuracy. To guard against this problem we use a simple t-statistic to flag suspect PRISM

means and adjust them toward the observed station mean.
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2.2 Transformation to Anomalies

To simplify the spatial structure of the monthly precipitation fields the spatial infilling is done after

a transformation and standardization of the raw observations. We will refer to the resulting values

as anomalies and unless otherwise specified the statistical analysis will be in the anomaly scale.

The spatial anomaly field has the advantages that it is closer to a Gaussian distribution and has no

geographical trend. Both of these features facilitate infilling and the estimates on this scale can be

easily transformed back in the scale of the original measurements. Furthermore, there is evidence

that suggests that the anomaly field is also closer to being second order stationary compared to the

raw scale (Fuentes et al. 1998). It is well known that precipitation amounts can be approximated

by a Gamma distribution in many cases. In this situation, the square root function is quite efficient

in transforming gamma distributions to distributions that are approximately normal and so the

square root transformation was used for all locations.

We again emphasize the independence of the monthly data sets and so dependence on the

choice of month (Jan, . . ., Dec) will be suppressed in the formulae that follow. To obtain the

anomaly at each time point (year of record), the square root of total precipitation is standardized

by its climatological mean and standard deviation. If P (x, t) is precipitation at location x, then

let θ(x) = E[
√

P (x, t)] and σ2(x) = V ar[
√

P (x, t) ]. The analysis constructs spatial predictions

based on the standardized anomalies, z(x, t) = (
√

P (x, t)− θ(x))/σ(x)

The most direct way to find the spatial functions θ and σ is based on spatial estimates from the

sample means and variances of individual station data. However, additional statistical modeling is

advantageous because short station records may by themselves give highly variable estimates of local

climatology. The spatial analysis used in this work leverages the high resolution and quality checked

mean precipitation fields from the PRISM analysis and so the actual smoothing step is nonstandard.

Let µ(x) = E[P (x)] denote the mean monthly precipitation at a given location and µ̂ the PRISM

mean. From elementary properties of the expectation: µ(x) = θ(x)2 + σ(x)2. Moreover setting

C(x) = σ(x)2/(θ(x)2 + σ(x)2) it follows that θ(x) =
√

µ(x)(1− C(x)) and σ(x) =
√

µ(x)C(x).

Thus once C(x) is known, estimates of θ and σ can be found using the relationships given above

and substituting µ̂ from the PRISM analysis for µ. We prefer this route because the function C,

related to a coefficient of variation, exhibits less spatial dependence than the individual means and

variances. As an added benefit, we also found that C(x) does not depend strongly on elevation.

By constructing the estimates of θ and σ in this way the implied estimate of µ will be µ̂, the

PRISM mean. In this work C(x) is estimated by smoothing the sample statistics with a kernel
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estimator. The bandwidths were determined by minimizing the mean squared error for a subset of

400 stations reserved for cross-validation. The resulting bandwidths for each of the 12 months were

small, followed a seasonal cycle and ranged from approximately 25 to 35 miles (.4 to .6 degrees of

longitude/latitude).

3 APPROXIMATIONS TO A BAYESIAN ANALYSIS

Brown et al. (1994) and Le et al. (1999) describe a hierarchical model used for spatial interpolation

based on Gaussian-Inverted Wishart and Gaussian-Generalized Inverted Wishart models. These

models constitute a standard method for Bayesian spatial interpolation. We follow the basic tenets

of these models but make modifications and approximations as necessary.

Assume that [ Zt | Ω ] ∼ N(0,Ω) are independent (conditional on Ω) normally distributed

p-dimensional random variables with mean zero and covariance Ω, for t = 1, . . . T and where Zt

represents the distribution of precipitation amounts in the standardized square root scale at all

locations for time t.

The prior distribution for the variance-covariance matrix Ω is Inverse-Wishart with degrees

of freedom ν + p + 1, and symmetric shape matrix νK, denoted by IW (ν + p + 1, νK). The

parameters are tied together in this way so that E(Ω) = K. We define K from a spatial cor-

relation function k: for two locations xi and xj , E [Ωij ] = k(xi,xj) and we interpret K as the

expected a priori average correlation function for precipitation anomalies. (Section 4 details our

choices of K and ν.) Under these assumptions, the conditional distribution of Zt given all other

data (Z1, . . . ,Zt−1,Zt+1, . . . ,ZT ) follows a multivariate Student’s t-distribution and provides the

statistical framework for infilling. A key feature of the model is flexibility in the spatial covari-

ance. Although the prior centers Ω on a particular spatial correlation function, the conditional

distribution can modify this form based on the sample correlations from the data. Specifically,

[ Zt | Z1, . . . ,Zt−1,Zt+1, . . .ZT ] ∼ tp (νc, 0, Q/νc) where Q = νK+
∑

i6=t ZiZT
i , and νc = ν+T −1.

The posterior distribution of the missing data Z(0)
t given the observations Z(1)

t at time t and

observations at all other times is our Bayesian infill distribution. It also follows a multivariate t

distribution: [
Z(0)

t | Z(1)
t , Zs, s 6= t

]
∼ t

(
ν?, Q01Q

−1
11 Z

(1)
t , ξ

[
Q00 −Q01Q

−1
11 Q10

] )
(1)

where ξ = (1 + Z(1)
′

t Q−1
11 Z(1)

t )/ν?, ν? = ν + T + p2 + 1, p2 is the number of stations with

an observation at time t and Qij (i, j = 0, 1) are the appropriate submatrices of Q partitioned
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by missing (0) and observed (1) blocks of observations. Substituting in for Q, the mode of this

distribution is

Ẑ(0)
t = (νK0 1 + nΣ̂0 1)

(
νK1 1 + nΣ̂1 1

)−1
Z(1)

t (2)

where nΣ̂ =
∑

s 6=t ZsZT
s and K and Σ̂ are partitioned in the same way as Q given above. We take

this posterior mode to be the point estimate of the infill observation. From a frequentist point of

view this can be identified as a ridge regression and, letting ν get large, this mode converges to the

usual best linear unbiased estimators, assuming the covariance matrix K.

3.1 Nearest Neighbors

Notwithstanding the elegance of the model described above, it is impractical to compute the mean

of the complete conditional distribution for this problem. The number of computations and storage

grow as the square of the number of observed locations and an exact solution is impractical. This

problem is compounded by the long data record and irregular missing patterns. The use of this

model by Le et al. (1999) takes advantage of missing observations that can be easily partitioned

into a block over time and space, but even so they are only able to obtain an exact analysis because

they consider a small number of spatial locations.

Here we propose a simple nearest neighbor (NN) approach that provides an approximate so-

lution. Given a particular station location to infill, we calculate the posterior mode in (2) by

restricting to data from a small number of neighboring locations. Stein (1999) suggests that the

best linear unbiased prediction at a point of interest, when using a stationary model, depends on

local behavior of the random field far more than on behavior at locations far from the point of in-

terest and is one justification for simplifying the infilling over an irregular lattice of time and space.

Furthermore, this approximation allows us to reduce the single large spatial prediction problem

to a set of many small problems only limited by the number of nearest neighbors. We emphasize

that the NN strategy here is a computational approximation to the full Bayesian posterior mode.

Our approximate solution is still grounded in a single model for the entire spatial field. The work

by Haas (1990, 1995) uses nearest neighbor methods extensively but from a different perspective.

Haas essentially builds a local spatial model for every prediction point and does not unify these

models as being derived from a single spatial field.

The key to making the NN approach work for this problem was to devise a fast but effective

rule for determining neighborhoods. Let N (xi, t) denote the neighborhood of locations to infill a

station, xi, at time t. If xj , is a member of N (xi, t), it must satisfy three conditions:
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• Incidence: The station at xj must have an observation at time t.

• Temporal Overlap: The periods of record for xj must have a sufficient number of observations

that overlap in time with the record of xi.

• Proximity: Given a distance metric, xj is close to xi.

Based on preliminary cross-validation analysis, we were lead to use 6 nearest neighbors for each

infill. Figure 2 shows how these three conditions generate neighborhoods for the Arco, ID station.

The incidence condition causes the neighborhood to be quite spread out at the 1895 time point

because of the sparsity of operating stations early in the last century. Stations which are used

at some point to do infilling at some point in the 103 years are denoted with a ‘∗’, while those

never used as neighbors are denoted by ‘ · ’. Those which are geographically close but never used

as neighbors are eliminated by combinations of the temporal overlap, incidence, and proximity

conditions.

Selection of a distance function is an important part of the process and of course different

applications may necessitate different distance measures. In our final analysis we were led back to

a simple form, based on the Bayesian prior correlation function: d(xi,xj) = 1 − k(xi,xj)2 where

k(xi,xj) is the kriging correlation model described in Section 4. Although in general d may be

different from geographical distance, the anisotropic covariance function used in this work tracks

geographical separation.

Finally, we note that there is a trade off between temporal overlap of neighbors and their

proximity. For example, consider a station that has been moved 1 km at time t∗ and relabeled as a

new station. The old station record and the new station record will not overlap, and therefore we

have no estimate of covariance based on a sample statistic. However, to infill the old station record

after time t∗, it is sensible to use the new station observations because of the close geographical

proximity. A station farther away with a long overlapping record, may not provide as good a

prediction. Specifics of such trade offs warrant further study.

3.2 Infilling

The concise form of the conditional distribution (1) given above depends on complete data for time

periods other than t, the time point to be infilled. These data are not available in the precipitation

record. Although it is possible to work out Bayes estimates with missing observations, this added

complexity is not practical for this large problem. Little (1988) discusses the relative merits of
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various estimates of covariance when data are missing. For simplicity, we settled on using only

time periods that were completely observed to estimate Σ as used in (2). The infilling proceeds as

follows:

for each station (i)

for each year to be infilled (t)

Step 1. Find neighborhood, N (xi, t)

Step 2. Find times (if any) of overlap for all stations in N (xi, t) and station i.

Step 3. Use the common set of complete observations from step 2 to calculate the degrees

of freedom, ν?(xi, t), mode (or median) anomaly, ẑ(xi, t) and dispersion, ξ(xi, t), of

the conditional distribution (1). The infill is P̂(x, t) = ( ẑ(x, t)σ(x) + θ(x) )2+

end (t)

end (i)

In Section 5.2, we show that the dispersion, ξ(xi, t), is useful in standardizing the prediction errors.

3.3 Approximate Sampling from the Posterior

We note here that the algorithm to find the posterior mode ẑ(xi, t), can be reused to sample

from the posterior. This justifies spending effort on a fast and accurate method of finding the

posterior mode in (1). The benefit of a random sample (ensemble) from the posterior distribution

is that variation among the members is a comprehensive representation of the uncertainty. At

the simplest level, the sample mean across ensemble members approximates the posterior mean,

and the ensemble standard deviation would be associated with the posterior standard deviation.

Furthermore, ensembles also facilitate inference beyond pointwise prediction.

Let U? be a draw from a multivariate normal distribution with mean zero and covariance

Q00−Q01Q
−1
11 Q10 and s2 a χ2 random variable with ν? degrees of freedom. Then from the properties

of the multivariate t, Z? = Q01Q
−1
11 Z(1)

t +
√

ν?U?/s is a random observation from the distribution

(1). To generate U?, first generate a multivariate normal, U with mean zero and covariance Q.

This random U corresponds with a complete set of observations. Next, partition U =
(
U(0),U(1)

)
into unobserved and observed, mimicking the data at time t and determine the “infilled” values

based on the posterior mode. Setting

U? = U(0) −Q01Q
−1
11 U(1) (3)

13



gives a random deviate with the desired attributes. We give a brief example of ensemble generation

using a subset of the data in Section 5.

4 PRIOR PARAMETER AND MODEL SPECIFICATION

The infilling procedure hinges on specifying a reasonable prior distribution for Ω. Given the large

and rich data record, we derive prior parameters for the Inverse-Wishart distribution empirically,

estimating the mean for Ω using standard correlogram fitting. We determine the degrees of freedom,

ν, using cross-validation and functional data analysis.

Recall that the prior distribution for the covariance matrix, Ω, is inverse-Wishart with degrees

of freedom ν +p+1 and centering matrix νK. The relationship between ν and K forces E(Ω) = K.

Because we are assuming that climatological standard deviations are known, we just model the

correlation structure of the spatial field. We choose to use a stationary model for K for several

reasons. First, the Bayesian structure will blend prior choice of K with the sample correlations and

so result in a nonstationary model that can track observed local effects. Secondly, current models

for nonstationary covariances are computationally intensive and would be overwhelmed by the size

of the infill problem. Finally, we believe that the anomaly scale also helps in homogenizing the

correlation structure (Fuentes et al. 1998). Although K may prescribe a stationary field in the

anomaly scale, the implied precipitation field can be nonstationary.

Let k(xi,xj ,η) = φ(||A(xi − xj)||) where A is 2× 2 matrix and φ is a member from the family

of Matern covariances (Stein 1999). The parameters of this model were estimated using weighted

least squares and more details can be found in Cressie (1993). From extensive data analysis we

found that the model could be productively simplified with the off-diagonal elements in A set to

zero. The scale parameters followed a smooth seasonal cycle with a mean of 670 km in the E-W

direction and 580 km in the N-S direction while the smoothness parameters varied from .58 to .82.

A key parameter in deriving the infilled estimate is ν, the degrees of freedom in the inverse-

Wishart prior for the spatial covariance. An idealized goal is to vary ν for each station location to

give the best mean squared error predictions for infilling. As a practical approximation we estimate

the infill error as a function of ν at a subset of 400 stations and extrapolate these results to the full

set of locations. This is done using a combination of smoothing techniques and principle components

and provides a balance between using a single value for all stations and a highly variable estimate

from single station estimates.

Let R(xi, ν) be the estimated mean squared error (MSE) for the ith station using degrees of
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freedom ν+p+1 in the infilling estimate and where p is the number of nearest neighbors. This MSE

is found by infilling anomalies for a station at times when data are observed and then calculating the

average squared difference between observed and predicted anomalies. An important assumption

here is that the CV function estimated for times when data are observed is comparable to that

when station values are missing. For 400 stations in a space filling subset of the total data record

the MSE is found at a grid of 50 values of ν. Let R denote this 400×50 matrix of MSEs. Each row

of R is a curve representing the mean squared error for a given station as a function of ν. Good

values for ν will coincide with the minimums of the MSE curves. In order to stabilize the estimates,

we smoothed these curves. Using singular value decomposition, R = UDV T where U and V are

orthogonal and D is diagonal with non-negative values in decreasing order.The smoothing was done

by spatial interpolation of the coefficient matrix The columns of U are interpreted as weights of the

columns of V , which are interpreted as basis functions over ν. R can be approximated by using

only the first three columns of U , and V and truncating D to conform. To further smooth this

representation over space, we fit (three) smooth surfaces to the first three columns of the coefficient

matrix U using thin plate smoothing splines. The smoothed elements of U were interpolated in

order to give a stable family of MSE curves for each station in the data set. These interpolated

MSE curves are then minimized to find the ν used at the infill step.

Most of the estimates of the degrees of freedom parameter were approximately 6 with the

smallest being 1.5 and the largest being 17.5. Although each month is considered independently,

the month to month transitions seem quite smooth and provide some support for the observed

spatial pattern in ν.

5 RESULTS

The results of the infilling for precipitation (and other data sets) are available via the internet

at: http://www.cgd.ucar.edu/stats/Data/US.monthly.met/. The README precip file available

from the same page has an extensive list of the assumptions made in the analysis.

5.1 Computing Efficiency

Given the prior information regarding the means, θ, standard deviations, σ, stationary covariance

model and the collection of degrees of freedom parameters, ν, the infilling step across the 11,918

stations and 103 time points for a month was implemented in Matlab and can be executed in a

matter of hours on a Linux PC with CPU speed of 4.0 Ghz. This included infilling the observed
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values in order to do cross-validation. Timing tests suggest that the increase in execution time due

to doubling the number of nearest neighbors to 12 increased the computation time by a factor of

1.20. Using 24 neighbors, rather than 6, increased computation time by a factor of approximately

1.80. Cross-validation studies on the 400 stations of the space-filling subset show that the decrease

in cross-validation sums of squares by using more than 6 neighbors is marginal, and for some

stations can be detrimental.

Finding neighborhoods is a significant portion of the computation. This primarily comes from

calculating and sorting the geographical distances. Since distances depend on the anisotropic

correlation model and the anisotropy is different for each month, little information about neighbors

can be carried over from the infilling of the collection of Januarys to the infilling of the collection

of Februarys. Furthermore, since neighborhoods depend on irregular observation patterns, each

station can have a distinct neighborhood for each year that needs to be infilled, thus neighborhood

information cannot be easily shared across years. Finally, paucity of data in the first 20 years

eliminates some of the benefit that could be had by limiting the search for neighbors to small

geographic regions.

5.2 Quantifying Infill Errors

Although the value of the infilling algorithm is for observations that are missing, the same proce-

dure can be applied to all times. The comparison between the infilled prediction and the actual

observation can be used to assess the accuracy of the infilling methods and also the adequacy of

model derived standard errors.

Figure 3 shows the standardized prediction standard error where the standardizing coefficient

is the station standard deviation from Section 2.2. This represents the proportion of variation in

the data (in the anomaly scale) not explained by the infilled values. Values near zero represent

near perfect infilling and a value of one implies that the infilling procedure is no better than using

the station mean.

If the spatial model used for infilling was correct, one might expect that (z(x, t)−ẑ(x, t))/
√

ξ(x, t)

approximately follows a standard normal distribution. Based on cross-validation we found the stan-

dardization to be useful for setting confidence intervals. Figure 4 shows the quantile-quantile plot

of these standardized prediction residuals. Slightly more than the expected number of standard-

ized residuals fall within the typical approximate 95% confidence intervals. In essence, a scientist

who wishes to find an approximate 95% confidence interval for the infilled value of a particular
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station and time combination with the formula, infill ±2 standard errors, will find that the interval

estimate is conservative. Outside of 2 standard errors the the residuals are heavier tailed relative

to a Gaussian and this will be discussed further in Section 6.

5.3 Comparison with Other Methods

The MSE curves for the special subset of 400 stations and the interpolated MSE curves as described

in Section 4 were typically convex, with unique minima at levels of ν which were not endpoints of the

testing grid. These unique minima at values between 0 < ν < ∞ imply that the approximate Bayes

method (AB) we describe is more effective, in terms of prediction error, than either kriging (with

the specified covariance function) or nearest-neighbor regression methods (using only 6 neighbors).

To calibrate this infilling method with other standard techniques in the statistical literature,

we investigated the performance of a windowed kriging (WK) model on the subset of stations in

Colorado. The topography of Colorado is sufficiently diverse to represent many of the potential

problems which could be encountered over the continental US. The local covariance model used in

WK was a Matern correlation model and was fit to correlations estimated over time using a nonlinear

least squares algorithm. The WK used a window with radius 150 km. Qualitatively, there is little

difference in the infilled values from the two methods (correlation coefficient = 0.99), however

infilling via the AB method was computationally 4-5 times faster. Part of the computational

bottleneck in WK came from the need to use large windows in in order for some of the early years

to be infilled. This slows down the nonlinear optimizer that estimates parameters for the correlation

function. Both the WK and AB methods include approximate standard errors for the infilled values.

Comparing the cross-validation standardized residuals from the two models, the standardized AB

residuals more closely approximated a standard normal distribution than did those from WK.

In summary, we found that a WK approach is comparable to our approach but requires more

computation.

5.4 Sampling from the Posterior

In many applications it may be more appropriate to generate an ensemble of infilled observations

or gridded fields that not only reflect the pointwise uncertainty but also preserve the correlations

among the locations. To showcase the utility of the infilling algorithm for sampling the posterior

conditional distributions, we consider again the subregion centered on Colorado, an area with highly

varied terrain and average precipitation that contains 391 stations. We emphasize that this method,
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while reported for a small portion of the US, can be scaled to the full problem.

Referring to the algorithm outlined in Section 3.3 the random field U was generated from a

multivariate normal with mean zero and covariance Q. Here Q is a sum of the stationary correlation

matrix and a nonstationary, short range correlation matrix derived from station sample correlations.

This second matrix involved some statistical estimates due to missing data. Specifically for station

pairs with less than 10 years of common data the correlations were estimated using a thin plate

spline using available correlations. Also, this correlation matrix, consisting of some estimated and

sample quantities, was tapered to a range of approximately 70 miles. Finally, the tapered matrix

was projected onto a nonnegative definite matrix to insure that the resulting Q was indeed positive

definite. (88% of the variability in the short range, nonstationary covariance matrix is explained

by the dominating 50 positive eigenvalues.)

The posterior mean field and three ensemble members for April 1948 are depicted in Figure 5.

To simplify the statistical interpretation, the ensemble members are plotted in the anomaly scale.

The cost for computing the (approximate) conditional field from the unconditional one, U? via (3),

was negligible because of the nearest neighbor approach.

6 DISCUSSION

This work has shown how local spatial methods combined with large scale models can be effective

for the prediction of nonstationary fields. The accuracy of the infilling, as measured by cross-

validation, is high in areas that are data rich or spatially homogeneous. Larger mean squared

errors are often in regions of varied topography, such as the Rocky Mountain states, or regions that

often have localized summer storms, such as the Florida peninsula. This poorer performance is

expected and it is not clear that more sophisticated spatial modeling will circumvent these physical

limitations.

An important aspect of this work is the validity of the model-based standard errors when judged

by cross-validation. A standard principle in spatial statistics is that while many estimators may give

comparable accuracy their internal measures of uncertainty may vary widely. Here we have found

that approximating the posterior distribution by a t-distribution and fixing some of the parameters

at estimated values yielded useful standard errors.

The potential for ensemble generation is particularly useful for numerical models such as bio-

geochemical simulations that require meteorological inputs. Separate runs based on the ensemble

members facilitate error estimation of regional and intra-regional effects. This is achieved by prop-
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agating the spread in the ensemble members to a subsequent spread in the individual model results.

Another concrete measure of the success of this methodology is the ability to process the 103

years of monthly precipitation records for the coterminous US on a standard computing platform

(e.g. Linux based PC) and a high level language (Matlab). Typically the final production run

must be executed several times as models are refined and unusual cases are handled. Therefore,

the time for production must be much shorter than the total time allocated for computing. There

is a tendency in the atmospheric sciences to rely on lower level languages (e.g. FORTRAN) for

processing large data sets. While this becomes necessary at some size, we found that the benefits

of flexibility in algorithm development in Matlab far exceeded possible speedup by coding in a

compiled language.

The heavy tails in the CV residuals are likely due departures from Gaussianity of the transformed

data. It can also be attributed partly to modeling small amounts of precipitation with a continuous

distribution. For areas that are very dry it is not reasonable to assume the anomalies will be

normally distributed. Moreover, small mean levels also have associated small standard deviations

(σ) and so small differences in the observed precipitation will be magnified on the anomaly scale. At

some point the continuous model for monthly precipitation amount will break down and a discrete

model explicitly including zero incidence must be entertained. For stations where the precipitation

values are a mixture of zeros and some positively valued random variable, conditioned on rainfall,

we found that the choice of transformation is of little consequence in a practical setting. Typically,

if a station has climatological mean that is near zero, then neighboring stations will likewise have

means and observations which are near zero. On the positive side, these discrepancies for arid

locations are small in an absolute scale and will have little effect in models used for studying

processes such as vegetation.

There is is simple way to check that our analysis reproduces the correct (nonGaussian) distri-

bution for precipitation. One simply observes the plots of the data vs. the infills. These plots

compliment the information in Figure 3 and show strong agreement between infill and observed in

most cases. For April, the correlation between infill and observed was greater than 0.9 for more

that 10,500 of the 11,918 stations. We trace this infill robustness to two factors. First, the spatial

prediction being based only on second moments is robust to moderate departures from normality

and in fact the square root transformation and standardization have done a good job of transform-

ing the distributions closer to Gaussianity. We therefore expect the posterior means to be efficient.

Second, because of the strong dependence among neighboring stations, the posterior mean will
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explain a large fraction of the variance and the prediction weights favor the nearest neighbors. Any

nonGaussian distribution in the neighboring anomalies with be transfered to the infilled value, as

it is linear combination of a few neighboring values.

Another systematic error is mis-specifying the climatology at a location to center the trans-

formed data (θ). There are some cases where PRISM means deviate significantly from earlier

historical data. Part of the difficulty in this case is to avoid introducing spurious temporal effects

by using means from an early period in time and transferring them to a later period. We have taken

the approach of adjusting the PRISM means when there are gross differences. Just as important,

the infilled data product will include the climatological means and standard deviations, in anomaly

scale, as part of its meta data and so the users can also diagnose the problems of centering.

The selection of the subset used for estimating prior parameters can also potentially bias the

model. We chose a subset of stations to fill space because we wanted to include long-range cor-

relations when estimating the global correlation function. Other schemes for selecting the subset,

such as an “interest-filling subset” based on the regional variability of C(x) (Section 2.2), could

have been used. For example, it makes sense to choose a more spatially dense set of stations in the

Rocky Mountains than in the Great Plains region to help account for orographic effects. Regard-

less, it is not clear what changes a different subset might have on the final data product, as the

method uses local information to the extent possible. Though more study is merited, we suspect

that the optimal subsets will be different depending on whether the optimality criteria is related to

estimating the global spatial correlation function or determining degrees of freedom parameters.

In this work we found that a simple distance based criterion for selecting neighborhoods was

effective. However, the infilling could be improved using more geographic or climatological in-

formation. A classical example are two mountain stations on different ridges that have common

precipitation patterns but are not considered neighbors because valley stations are geographically

closer. The PRISM model has a sophisticated regime for associating neighborhoods based on such

covariate information. This scheme could be incorporated into the neighborhood selection criteria.

There is a delicate balance that must be struck when finding neighborhoods, especially when

there are many missing values. A large set of overlapping observations is good for reducing pre-

diction variance in the regression setting. On the other hand, having neighbors which are close

geographically is also useful for reducing prediction variance, since correlation between two stations

is strictly decreasing as the separation distance increases. The nuances of this trade off merit more

study.
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An obvious extension to this analysis is to incorporate a more flexible covariance model in the

prior. One compromise is to consider a slowly varying parametric model that approximates the

variable convolution ideas of Higdon et al (1999). Ideally components of the PRISM system could

be matched in this model including dependence of the covariance on elevation and aspect (the

direction a slope faces). A more realistic covariance model would also facilitate interpolating the

field to grid locations off the observation network.

For precipitation it was not productive to model temporal dependence, but for other variables

this may be an important component. A simple approach that builds off of these models is to

model the field as an autoregressive process in time with innovations that have spatial correlation.

Such a model has been useful in capturing the space/time structure of wind fields and filling in

sparse measurements (Wikle et al. 2001). Given that z(x, t) are transformed and standardized

meteorological anomalies, one would start with the first order auto-regression

z(x, t) = a(x)z(x, t− 1) + u(x, t)

where a(x) are autoregressive parameters varying in space and possibly over season and u(x, t)

are Gaussian fields that are independent in time. Given the autoregressive model, the spatial

prediction now involves infilling the shock u(x, t) for missing times and locations. This operation

will be computationally similar to the one presented above, but will inherit some added uncertainty

due to estimating the autoregressive parameter surface. Of course, there is the added difficulty

inherent with time series model of specifying the initial time vector (z(x, 1)) and this problem is

compounded by the sparsity of data in the earliest period.

In closing, we have produced a useful analysis of the US precipitation record. However, additions

to our research suggest a fertile area of statistical research.
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July Record Arco, ID.
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Figure 1: The record of July precipitation (mm) for the Arco, ID Station (100375) in south-central

Idaho. The × denotes years where the record is missing.
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Neighborhoods for Arco, ID Station
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Figure 2: The station of interest is denoted by ’×’, stations used in infilling are denoted with ’*’,

and other stations are denoted with by ’·’. Neighborhoods for the infilling of July 1897 and July

1995 are connected with dashed lines; the tighter neighborhood corresponds with July 1995.
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Figure 3: Square root of the standardized prediction error for (a) January and (b) July. Values

near zero correspond with infills that are near the observations, while values near one suggest that

using the climatological mean would be as effective as the infilling.
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Q-Q Plot of Standardized Prediction Errors
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Figure 4: Q-Q plot of the cross-validation standardized residuals. Approximately 500,000 residuals

for July are depicted. The box shows a 96.4% Gaussian confidence level. Since 97.9% of the

residuals fall in the region, intervals at typical confidence levels will be slightly conservative.
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Figure 5: Panel (a) shows the infilled mean for stations in Colorado, April 1948. Panels (b-d) show

contours of random ensemble anomalies (deviations) conditioned on observations from April 1948.

An ensemble member would be the pixel-wise sum of panel (a) with any of the other panels. The

contour levels are at -.67 and .67 standard deviations.
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