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Technical Description of the Gibbs Sampler

Univariate model

For the simplest model, with no correlation structure between X’s and Y ’s and Gaussian like-
lihoods, we can write the joint density of θ, µ, ν, λi, Yi (1 ≤ i ≤ 9) and Xi (0 ≤ i ≤ 9), as
proportional to:

N∏
i=1

[
λa−1

i e−bλi · λiθ
1/2 exp

{
−λi

2
((Xi − µ)2 + θ(Yi − ν)2)

}]
· θc−1e−dθ · exp

{
−λ0

2
(X0 − µ)2

}
.

(1)
From (1) consider the joint distribution of ν and θ, conditional on all other parameters being
known. These are easily derived as
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Also, by integrating out µ and ν but conditioning on θ in (1) we can write the posterior distri-
bution of the precision parameters λ1, . . . , λ9:
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From (4), ignoring the first two factors, one can recognize that the posterior density of λi

given θ is

Γ
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}
(5)
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Robust model with correlation between present and future AOGCM response

There is a simple way of characterizing Student-t distribution through the introduction of an
auxiliary randomization. Rather than modeling Xi and Yi directly as in (??) and (??), we write

Xi = µ + siεi (6)

and
Yi = ν + β(Xi − µ) + tiε

′
i/
√

θ (7)

where si, ti are independently distributed as χ2 with φ degrees of freedom, and εi, ε
′
i, θ have the

same distributions specified for the basic univariate model. This modeling choice exploits the
fact that if a random variable x has a standard normal distribution, y has a Γ(φ/2, 1/2) (also
known as a χ2 distribution with φ degrees of freedom), and x and y are mutually independent,
then

z =
x

(y/φ)1/2

has a Student-t density with φ degrees of freedom. A feature of this modeling choice is that by
imposing degenerate prior distributions for β = 0, ti = 1 and si = 1 this model reduces to the
basic univariate model of Section ??. Note that in this modified version of the model we have
to fix the value of θ = 1 to make the parameters identifiable.

We write the joint density of the random variables in this model, as proportional to:
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From it, a series of full conditional distributions, on which the Gibbs sampler’s iterations are
based, is easily derived.

We conducted several separate analyses by varying the degrees of freedom φ of the Student-t
distribution over the set {2, 4, 8, 16, 32, 64, 200}. Low values of the degrees of freedom accentuate
the heavy tail nature of the distribution, accommodating for larger outliers. The higher the value
of the degrees of freedom the closer the approximation to a Gaussian assumption. Although
in principle one could estimate the degrees of freedom along with the other parts of the model
we found that this added complexity was difficult to handle given the small sample sizes of the
model output data. As an simpler alternative we choose to investigate the sensitivity of the
conclusions to this parameter.

Gibbs sampler implementation

The Gibbs sampler can be coded so as to simulate iteratively from the following sequence of full
conditional distributions (the . . . at the right of the conditioning sign refer to all the random
variables in the model, apart from the parameter to be drawn, from which the definition ”full
conditional”):
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In what precede, we have used the following shorthand notation:

µ̃ =
∑

siλiXi − θβ
∑

λiti(Yi − ν − βXi) + λ0X0∑
siλi + θβ2
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, (16)
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∑
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∑
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We have shown here the sampling distributions for the robust model that includes correlation
between Xi and Yi in the form of a regression law. We can fix si = ti = 1, β = 0 and sequence
only through draws of λ1, . . . , λN , µ, ν and θ in order to simulate from the posterior distributions
of the basic univariate Gaussian model presented in Section ??.

The actual implementation of the Gibbs sampler consists of cycling through the following
sequence of random variate generations:

1. Given the current values of all the remaining parameters, sample a value of µ from the full
conditional distribution [µ| . . .].

2. Given the new value of µ, and the current values of the remaining parameters, sample a
value of ν from the full conditional distribution [ν| . . .].

3. Given the new values of µ, ν, and the current values of the remaining parameters, sample
a value of λi from the full conditional distribution [λi| . . .]. Repeat for i = 1, . . . , 9.

4. Given the new values of µ, ν, λ1, . . . , λ9, and the current values of the remaining parameters,
sample a value of θ from the full conditional [θ| . . .].

5. Given the new values of µ, ν, λ1, . . . , λ9, θ, and the current values of the remaining param-
eters, sample a value of β from the full conditional [β| . . .].

2



6. Given the new values of µ, ν, λ1, . . . , λ9, θ, β, and the current values of the remaining pa-
rameters, sample a value of si from the full conditional [si| . . .]. Repeat for i = 1, . . . , 9.

7. Given the new values of µ, ν, λ1, . . . , λ9, θ, β, s1, . . . , s9, sample a value of ti from the full
conditional [ti| . . .]. Repeat for i = 1, . . . , 9.

8. Repeat from the top.

Markov Chain Monte Carlo implementation

For all models’ estimation, we ran the sampler for a total of 500, 000 iterations, discarding
the first half of the simulated values and saving only one draw every 50. Thus, we base our
conclusions on a total of 5, 000 values for each parameter, representing a sample from its posterior
distribution. The convergence of the Markov chain to its stationary distribution was verified by
standard diagnostic tools (Best et al. 1995).
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