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Some Motivation
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Talk Outline

I A Simplified Moist GCM – model description

I A Simple Convection Scheme

• Formulation

• Effect on Zonally Averaged Circulation

� Hadley circulation (energy and mass transports),

tropical precipitation

• Effect on Transient Dynamics/Equatorial Waves

� Speed/strength of equatorial Kelvin waves
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A Simplified Moist GCM

I Goal:

• Design a simplified GCM that incorporates the

dynamical effect of moisture in the simplest possible

manner, while remaining fully modular with full GCM

physical parameterizations whenever possible

I The model:

• Primitive equations: up to T170 resolution, 25 levels

• Gray radiative transfer (next slide)

• Aquaplanet slab mixed layer ocean

� Closed system in terms of energetics (atmosphere

performs all the energy transports)

• Simplified Monin-Obukhov surface flux scheme, K-profile

boundary layer scheme
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Radiation Scheme

I Gray radiation: Water vapor, clouds, other tracers have no

effect on radiation.

I Parameters: longwave optical depths, shortwave heating

LW optical depths
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Moisture/Convection

I No condensate, no microphysics, no freezing

I Simplest convection scheme: no convection scheme!

(large scale condensation (LSC) only)

• Precipitation occurs when a gridbox becomes

saturated

• Model can be integrated with this

• Revaporate precipitation into unsaturated areas

• Similar in practice to moist convective adjustment
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No Convection Scheme Simulations

I Instantaneous precip, T85 and T170 resolutions
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No Convection Scheme Simulations

I Precipitation is concentrated at the grid scale in the tropics

I Tropics are sensitive to resolution in this model: however

midlatitudes are not

I This version of the model used in studies of moisture effects

on midlatitude static stability, eddy scales, energy fluxes,

and jet latitude. (Frierson, Held and Zurita-Gotor 2006a, b)

I Also used in a nonhydrostatic GCM to study the

“hypohydrostatic” rescaling (Garner et al 2006)
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A Simplified Betts-Miller (SBM) Convection

Scheme

I Basic principle: relax temperature, humidity to some

post-convective equilibrium profile (Betts 1986, Betts and

Miller 1986, see also Arakawa 2004)

δT = −T − Teq

τc

, δq = − q − qeq

τc

I Equilibrium temperature profile: moist adiabat from surface

parcel (relax up to LZB)

I Equilibrium humidity profile: specified relative humidity with

respect to the equilibrium temperature

I First complication: enthalpy conservation

(−
R

δqdp/g =
R cp

L
δTdp/g, or drying must equal heating)
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Enthalpy Conservation

I Shift reference temperatures by a uniform amount in height

to satisfy enthalpy conservation (simplest method that is

continuous, similar to real Betts-Miller scheme)

∆k =
1

∆p

Z pLZB

p0

−(cpδT + Lδq)dp

Teq2 = Teq − ∆k

cp

I If the column is too dry, the temperature correction is

negative (rough simulation of downdrafts)

I Implies precipitation is no longer correlated with CAPE.

I Second complication: what if predicted precipitation after

this adjustment is negative?
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Shallow Convection

I When predicted precipitation is negative, set precip to

zero and perform “shallow convection”

I Three methods of doing this:

• No adjustment of temperature and humidity: baseline

for comparison (δT = δq = 0)

• Change humidity profile by uniform fraction (Choose fq

in qeq2 = fqqeq such that net drying equals zero): “qref”

• Lower depth to where net drying equals zero (Choose

pshall such that 0 =
R pshall

p0
(− q−qref

τc
)): “shallower”
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Sensitivity to Shallow Scheme

I Simulations with τc = 2h, RHSBM = .7, instantaneous

precip
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SBM with no shallow convection

I With no shallow convection scheme, the convection

scheme is much less effective

I Two shallow schemes are qualitatively similar
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Hadley Circulation

I Moist static energy fluxes by Hadley circulation (30N-30S):
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I Equatorward transport by Hadley circulation for LSC only

I Two SBM shallow convection schemes are similar

I LSC has 50% larger mass flux compared with SBM!
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Precipitation

I Zonal mean precip (30N-30S):
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I ITCZ precip scales with Hadley circulation strength (larger

for LSC and no shallow)

I Increased precip within ITCZ in LSC and no shallow cases

are accompanied by reduction within subtropics (total

precip remains similar)
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Ability to Build Up CAPE

I Claim: key categorization of convection schemes is ability

to build up and rapidly release CAPE (abruptness of

convective trigger)

I Time series of precip and CAPE along the equator:
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Ability to Build Up CAPE

I Test with a more stringent convective criteria: RHSBM = .8
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I Two shallow schemes begin to diverge

I No shallow scheme looks more like LSC only simulations
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Shallow Convection Summary

I Properties of schemes that have abrupt release of CAPE

(LSC, or SBM with no shallow scheme):

• Smaller energy transports by Hadley cell

• Larger Hadley circulation mass flux

• Smaller/negative “gross moist stability” = mv
v̄
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• Larger eddy moisture fluxes

• More resolution dependence
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Effect of Convective Relaxation Time

I Vary relaxation time: τc = 1h, 2h, 4h, 8h, 16h

I Significant effects on many aspects of the circulation:

transients, relative humidity, fraction of convection, etc

I However there is no effect on Hadley circulation system

(provided large scale precip does not occur)
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I Mass transport and ITCZ precip are within 2 % for first 4

cases (then an abrupt increase of 35%)
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Effect of Convective Relaxation Time

I How is the circulation so insensitive to relaxation time?

I Rewrite the precipitation expression:

q̄ = q̄eq + τcP

Humidity adjusts to keep precip the same.

I This same adjustment occurs in simple models such as

Frierson, Majda and Pauluis 2004.

I Sensitivity to RHSBM is more complicated due to changes

in surface budget, but circulation is still relatively insensitive
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Tropical Waves

I Method of Wheeler and Kiladis (1999):

• Fourier transform over the tropics in space and time

• Separate into eastward and westward propagation

• Take out “background spectrum”

• Observations show Kelvin waves, Rossby waves, etc

with reduced phase speeds
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Gross Moist Stability

I Dry wave equation:

∂u

∂t
= −∂T

∂x
(1)

∂T

∂t
= −∆s

∂u

∂x
+ P (2)

where ∆s is dry stability

I But precip is correlated with convergence (P = −∆q ∂u
∂x

)

∂T

∂t
= −∆m

∂u

∂x

with ∆m = ∆s − ∆q, the gross moist stability

I Phase speed goes as
√

∆m
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Tropical Waves

I Wheeler-Kiladis diagram for precip for simulation with

τc = 2h, RHSBM = .6
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I Strong, persistent Kelvin wave dominates the spectrum

I Speed ≈ 20 m/s (40 m equivalent depth), only slightly faster

than observations. What sets speed? Sensitive to

convection scheme parameters?
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Control Simulation Kelvin Wave Composite

I Method of Wheeler, Kiladis, and Webster: take Kelvin

filtered time series at a point on the equator, regress this

against other fields
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Control Simulation Composite

I P, E, usurf on the equator:
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I Evaporation leads and provides strength for wave:

evaporation-wind feedback is energy source

(E = CD|u|(qs − q))
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Control Simulation Composite

I Shallow convection leads and propagates moisture

upwards
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Sensitivity to Relaxation Time

I Wheeler-Kiladis diagram for different τc (2 h, 4 h, 8 h)
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I Longer relaxation time causes additional convective

damping (Emanuel 1993)
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Relaxation Time Composites

I Kelvin wave composite of P, omega, q for τc = 2h, 4h:
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I Temperature more out of phase with vertical velocity with

longer relaxation time
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Simulations With Some Large Scale Precip

I Next increase RHSBM from the control value to cause

some large scale precip to occur (with τ = 4h here)
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I Percent of large scale precip: (0%, 18%, 99%)

I When there’s mostly large scale precip, no Kelvin wave

I With some large scale precip, the variability is enhanced,

and the propagation speed becomes slower
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Composites

I Composites of RH=.6 and .8 cases
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Gross Moist Stability

I Vertical advection of moist static energy divided by

vertical advection of dry static energy:
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Conclusions

I Convection can have significant effect on zonally

averaged tropical circulation

I Key classification of convection schemes: ability to build

up and rapidly release CAPE

I Relative insensitivity to convection scheme parameters,

provided LSC precip is not allowed to occur

I LSC precip enhances and slows simulated equatorial Kelvin

waves

I Concurrent and future work

• 2-D Walker cell – within this model and full GCM

• Quantitative theory for gross moist stability

• Fully moist Hadley circulation theory


