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Qutline

e Qverview of the problem

e Characterize the approach to the problem

— illustrate issue of truncation
— illustrate uncertainties associated with non-resolvable motion field
— lllustrate the likely importance of scale interaction

e Show why resolution is only part of the problem
— a necessary but not sufficient condition to reduce uncertainties
— Introduction of chemical and biogeochemical extensions needed

e Some paths forward
— many paced by the efficient application of HPC technologies
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What is Climate?

Average Weather

Record high and low temperatures
The temperature range
Distribution of possible weather
Extreme events

moow»

All of the above!
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Example of Global Climate Model Simulation

Precipitable Water (gray scale) and Precipitation Rate (orange)

Animation courtesy of NCAR SCD Visualization and Enabling Technologies Section
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Observed Temperature Records

(b) the past 1,000 years
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Impacts of Climate Change

Observed Change 1950-1997
Snowpack Temperature

Mote et al 2005
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Observations: 20" Century Warming

Model Solutions with Human Forcing
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Energy Balance: Fundamental Driver of the Scientific Problem

Longwave and Shortwave Energy Budget
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Global Heat Flows
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AX =150 km

— balance horizontal and vertical resolution, and physics complexity

— computational capability Oth-order rate limiter
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— non-deterministic problem with large natural variability

— long equilibrium time scales for coupled systems

Computational Balancing Act

e Quality of solutions are resolution and physics limited

AX = 300 km

e Long integration times/ensembles required for climate
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Atmospheric Motion Scales and Parameterization
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Global Modeling and Horizontal Resolution

Topography
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Simulation Improvements in Mean Measures

high-
resolution
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Atmospheric Energy Transport

Synoptic-scale mechanisms
* extratropical storms « hurricanes
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Capturing Primary Phenomenological Scales
of Motion in Global Models

Simulation of Tropical Cyclone Impacts on Climate

o GOES-8 RGB=CHILOCH3CHA 10/022002 12:15 UTC
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High-Resolution Global Modeling

Simulation of Tropical Cyclone Impacts on Climate
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High-Resolution Global Modeling

Still a Need to Treat Subgrid-Scale Processes

Panama

ST 142
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) _ Courtesy, NASA Goddard Space Flight Center Scientific Visualization Studio
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The Cumulus Parameterization Problem
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Can be treated/investigated in a single column framework
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Process Models and Parameterization
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Does Resolution Matter at the Process Level?

Moist Convection Example
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What happens to the “large-scale” motions seen by the

parameterized physics as resolution is changed?
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Warm Pool Temperature Forcing Time Series

T85 averaged to T42 T42 (300 km)
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Warm Pool Precipitation Characteristics
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Nonlinearities in parameterized physics
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Atmospheric Motion Scales and Parameterization
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We cannot escape the parameterization problem

e Climate Sensitivity: the final frontier
— what is the real climate sensitivity?
— clearly linked to treatment of parameterized physics
— Clouds!!
— may be linked to extensions to physical climate system
— Chemistry!
— Carbon!!
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Parameterization of Clouds
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Marine Stratus: Low Clouds over the Ocean
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Low Clouds Over the Ocean

Two Models: Changes
are OPPOSITE!

NCAR CAM2 (Year70 @1%CO,/yr — CTRL)
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Some Other Sources of Uncertainty
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Enerqy Budget Impacts of Atmospheric Aerosol

A massive sandstorm blowing off the
northwest African desert has blanketed
hundreds of thousands cf square miles of the
eastern Atlantic Ocean with a dense cloud
of Saharan sand. The massive nature of this
particular storm was first seen In this SeaWiFS
image acquired on Saturday, 26 February 2000
when It reached over 1000 miles into the Atlantic.
These storms and the rising warm air can lift dust
15,000 feet or so above the African deserts and then
out acress the Atlantic, many times reaching as far as
the Caribbean where they often require the local weather |
services to issue air pollution alerts as was recently
the case in San Juan, Puerto Rico. Recent studies by the [
U.S.G.S.(http://catbert.er.usgs.gov/african_dust/) j
have linked the decline of the coral reefs in the Caribbean
to the increasing frequency and intensity of Saharan Dust
events. Additionally, other studies suggest that Sahalian
Dust may play a role in determining the frequency and
intensity of hurricanes formed in the eastern Atlantic Ocean |
(hitp:/www.thirdworld.org/role.html)
by the SeaWiFS Project, NASA/GSFC and ORBIMAGE |
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Climate Model ‘Evolution’

The development of climate models, past, present and future
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The Computational Efficiency Challenge

e Heterogeneous collection of irregular algorithms
— diverse collection of algorithms (physical/dynamical/chemical processes)

e Relatively low-resolution configurations
— severely limits scalability; parallelism grows slower than op count

e Use of non-local techniques
— employed for numerical efficiency, inherently communication intensive

e Need for long integration periods
— physical time scales decades to centuries

e Efficient implementations for volatile computational environments

— Immature development and production environments
— sub-optimally balanced hardware infrastructure
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Participation in Community Exercises

IPCC 1995: Climate Model Projections
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Summary

e Global Climate Modeling
— complex and evolving scientific problem
— parameterization of physical processes is pacing progress
— observational limitations are pacing process understanding
— computational limitations pacing exploration of model formulations

e Time for more comprehensive exploration of “spectral gap?”
— exploration of scale interactions using modeling and observation
— ultra-high resolution global simulations (—107x present)
— super-parameterization (MMF) approach (—200x-500x)

— high-resolution process modeling to supplement observations
— identify optimal truncation strategies for capturing major scale interactions
— better characterize statistical relationships between resolved & unresolved scales
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The End
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