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Introduction

“ Deep convection plays a central role in
various aspects of the climate system:
¥ Release of latent heat of vaporization.
W Radiative impacts of clouds and water vapor.
® Ascending branch of the general circulation.
® Key role in tropical variability.
W GCM resolution (~100km) is insufficient to
resolve deep convection, which then must be
parameterized.

The need to parameterize deep
convection remains a large source of
uncertainty in climate simulations.




A fundamental difficulty with

moist convection lies in the

wide range of scale involved:

\ - Microphysics (few mm)

nddft E“‘& ~ - Internal turbulence (~100m)

| 17, < - Convective tower (~1km)

- Anvil cloud (~10 km)

- Meso-scale organization
(100km)

- Strongly affected by
synoptic and planetary
motions




How much detall is required to capture the
statistical behavior of moist convection?

m This is a problem of
numerical convergence:

= In theory, numerical
solutions converges toward

M | error
odeeo>

GCM, no param.

analytic solution at hlgh GCM, param.
resoluton | | . (L;ESSRM
= In practice, one must settle >

for a satisfactory solution. Grid size

The use of a parameterization is justified if it
iImproves the model convergence.



Zetac: a non-hydrostatic multi-
scale model:

Fully compressible dynamical core can be used for
global simulations as well as LES.

Monotonic advection scheme (Piecewise Parabolic
Method). The model does not require any additional
numerical diffusion.

m 5 species microphysics (LFO 1984).
m Parameterization for isotropic turbulence.

m Compatible with GFDL Flexible Modeling System:
Zetac has access to all physical parameterizations
developed for GFDL AM2 model.



Radiative-convective equilibrium

Long integration (~16 days)
Constant SST (302.15 K)
Interactive radiation.

Weak and strong wind
shear cases.

= Compare simulations with B 3
2, 4,8, 16 and 32km +

Suria@ /aknt arnd sensble rear x

resolutions. (Vertical SST=29C
resolution is unchanged.)

_1 Domain size is 50x50x60 grid points
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Numerical results

Temperature bias - weak shear
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cloud fraction (9.>0.05 a/kg) cloud fraction (9.>0.05 a/kg)
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. PDF OLR - no RAS
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m Due primarily to the humidity bias, OLR
iIncreases at coarse resolution (error~10-
15Wm>)
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Probability distribution function for vertical velocity
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Buoyancy and vertical
acceleration

Archimedes' principle: a static
fluid exerts a pressure force
on any immersed body equal
to the weight of the displaced
fluid:

B={g(p; - p)

However, the pressure within a moving fluid is not
the same as the hydrostatic pressure for a fluid at
rest.




00V +pV eVV = -Vp - pgk
Ve(pV)=0
d.0(z)=0

m The pressure p can be decomposed into an
hydrostatic and non-hydrostatic filed: =

P=P,*t Py with p,(x,y,2) =fpgdz

m In this case, the vertical momentum equation is
pow+ pVeVw=-d p,

m The non-hydrostatic pressure field can be obtained
from the continuity equation:

Vz(azpnh) = gV?{p + NL

After Davies-Jones (2003)
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Vertical Velocity scaling
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Scaling for vertical velocity
1s much less sensitive than
traditional hydrostatic scaling

W~1/L .

3rd moment of vertical velocity as function of resolution
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Dashed Line: Vertical velocity in simulations
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Rescaling the vertical velocity

Probability distribution function for vertical velocity

Probability distribution function for vertical velocity 10! , ;
+ Lz || T " |
""""""" L = 4dkm 1 10U L - .
_____ L = Bkm - § ____'I_ = Bkm E
L;16|<m ——L = 16km| ]
""""" L = 32km] | 10’k ~—L = 3zkm §
10°F
i 10°F
10
10°F
5 :ité'“% e | 10-?5 25
20 25
L
(1+ A7 )?
W /
rs
2km 1
(1+——)

m Very close match after rescaling of the vertical velocity PDFs.

m Breakdown at larger scales, which should follow a different
scaling law.



Why does the rescaling work?

m Dominant dynamic is non-hydrostatic
ascent of buoyant air parcel.

m Buoyancy distribution in convective updraft
IS not affected by model resolution.

m Thermodynamic properties of the updrafts
unaffected by model resolution.

m Minor impact of isotropic turbulence
scheme on updraft velocity and
thermodynamics.
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m Cold pool dynamics takes place at scale
much larger than the updrafts.

m Tompkins (2001) argues that the cold
pool dynamics plays a fundamental role
In regenerating the unstable air masses



. Probability distribution function for moist entropy at the surface
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m Deep convection well behaved for resolution up
to ~16km.

m Confirmed by scaling law which indicates only
a weak reduction In vertical velocity at coarse
resolution.

m But significant bias for temperature, humidity
and low level cloudiness, related to a poor
representation of shallow convection.

m Re-do the sensitivity studies, but using a strip
down Relaxed Arakawa Schubert (RAS) as a
poor man shallow convection scheme with:

= No precipitation from RAS.
s RAS is not allowed to go above 500mb.
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Specific humidity bias - no RAS  Specific humidity bias - shallow RAS
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cloud fraction (qc > 0.05 g/kg)

- shallow RAS (,,q fraction - Shallow RAS
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m Reduction in the bias for low level cloudiness

m The peak at 6km corresponds to the 500 mb
level and is most likely related to the use of
RAS for shallow convection.



Temperature bias - no RAS Temperature bias - shallow RAS
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m The temperature bias has also
decreased.



PDF OLR - no RAS
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m Reduction of the humidity bias also

reduces the OLR error (error~5-10Wm)



Temperature bias - domain size  Specific humidity bias - domain size
. . . 20

20 T ! T I T
- Shd - LG
81 L o Bkm - LG
— Bkm - Sh
16+ 16 8
14+ 14+ :
12 12 .

6 (= _
4r 4r -
2r 2- i
0 0 ' '

1 2 -1 -0.5 0.5 1

0
& gikglkg) %107

The temperature bias is partially caused
by the difference in domain size



Conclusion

m The vertical velocity of deep convection
to horizontal resolution is only weakly
sensitive to horizontal resolution.

m Scaling law is confirmed by numerical
simulations
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m Coarse resolution simulations are
however marked by warm and dry bias.

m [nclusion of a (crude) representation for
shallow convection does improve the
convergence.

m Domain size has an impact on the
temperature bias.

m |t should possible to reproduce the
behavior of a 2km resolution model with
a 10-15km resolution.



TO-DO List

m Better shallow convection scheme.

m Study the sensitivity

= of the horizontal velocity transport and
spectrum.

m Of the onset of convection.

m Rescaling approach to improve the
model behavior (e.g. hyper-hydrostatic
scaling)



