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Prelude: The Data Assimilation Problem:

Given 1. A physical system (atmosphere, ocean...)

2. Observations of the physical system

Usually sparse and irregular in time and space.
Instruments have error of which we have a (poor) estimate.
Observations may be of ‘non-state’ quantities.

Many observations may have very low information content.

3. A model of the physical system

Usually thought of as approximating time evolution.

Could also be just a model of balance (attractor) relations.
Truncated representation of ‘continuous’ physical system.
Often quasi-regular discretization in space and/or time.
Generally characterized by ‘large’ systematic errors.

May be ergodic with some sort of ‘attractor’.

Anderson: Parameter Estimation with Filters: IMAGe TOY 2 2/24/06



We want to increase our information about all three pieces:

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’.
Initial conditions for forecasts.
High quality analyses (re-analyses).

2. Get better estimates of observing system error characteristics

Estimate value of existing observations.
Design observing systems that provide increased information,

3. Improve model of physical system

Evaluate model systematic errors.
Select appopriate values br model parameters.
Evaluate relative characteristics of different models.
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Seminar Road Map:
1: Single variable and observation of that variable.
2. Single observed variable, single unobserved variable.
3. Generalize to geophysical models and observations.
4: Dealing with sampling and other errors.
5. Parameter estimation.

Tomorrow: Hierarchical Bayesian methods.

Anderson: Parameter Estimation with Filters: IMAGe TOY 4 2/24/06
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p(B| C) [P(B[x)p(x| C)dx
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A:. Prior estimate based on all greus information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.

Anderson: Parameter Estimation with Filters: IMAGe TOY 5 2/24/06



P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)
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A: Prior estimate based on all previous information, C.
B: An additional obsetion.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B[AQP(AC) _ p(BAC)p(A|C)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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Consistent Color Scheme Throughoutdrial

Green = Prior

Red = Obsewation

Blue = Rosterior
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. _ P(BIACQP(AIC) _ p(B[AC)P(AC)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(H1 21)N(Hg, 25) = CN(W, 2)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: b= (Z+ 5N E, + Z500y)
_— ~ 1 01 _ U
Weight: ¢ = (Zn)d/z‘zﬁ22‘1/2exp%r§[(u2—u1)T(zl+zz) 1(u2—u1)]g

We’'ll ignore the weight unless noted since we immediately normalize
products to be PDFs.
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-
Mean: h = (Zil + Zil)_l(zilul + 251112)

_ 1
(2|‘|)d/2‘21

SR Ll NT TR
Weight: ¢ +22‘1/2expg—2[(u2 u)T(Z, +Z,) "y, “1”%

Easy to derive for 1-D Gaussians; just do products of exponentials.
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P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)

Bayes rulep(A/ BC) =

p(B| C) [P(B[x)p(x| C)dx
Ensemble filtersPrior is aailable as finite sample.
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Don’t know much about properties of this sample.

May naively assume it is random draw from ‘truth’.

Anderson: Parameter Estimation with Filters: IMAGe TOY 17 2/24/06



P(B|AC)P(AIC) _ pP(B|AC)p(AIC)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =

How can we take product of sample with continuous likelihood?
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Fit a continuous (Gaussian for now) distribution to sample.
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P(BJAC)P(AIC) _ pP(BJACQ)P(AIC)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =

Observation likelihood usually continuous (nearly always Gaussian).
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If Obs. Likelihood isn’'t Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.

0.6 ! ] I T
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
;Posterlor PDF
204
2 or B
B Prior P;D
o _
A Q.2 e S

2
Compute posterior PDF (same as previous algorithms).
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.



Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
Second, use linear contraction to have exact variance of posterior.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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x: = (xX*=xP)Qo"/6) +x" i=1,.., ensemble size.
p is prior,  uis update (posterior), overbar is ensemble mean,
o is standard deviation.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Bimodality maintained, but not appropriately positioned or weighted.
No problem with random outliers.
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Phase 2: Single obs@&w \ariable, single unobsezd \ariable

So far, have known observation likelihood for single variable.
Now, suppose prior has an additional variable.

Will examine how ensemble methods update additional variable.
Basic method generalizes to any number of additional variables.

Methods related to Kalman filter in some sense, but not done here.
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Ensemble filters: Updating additional prior state variables

5 | | Assume that all we know
IS prior joint distribution.

4.5 v S ] One variable is observed.

i | o ¥ (Boulder temperature)
| | What should happen to

unobserved variable?

Unobserved State Variable
AN

b 3
(NCAR temp.)
3¢
31*' . ¥
3 s %% 3%
—2 0 2 4

Observed Variable

Anderson: Parameter Estimation with Filters: IMAGe TOY 31 2/24/06



Ensemble filters: Updating additional prior state variables

Assume that all we know

24 g | | * | is prior joint distribution

O -4 I 7 * 7 7 o 7 7 * * 77777777 .

S35 ~ o

3 * One variable is observed.
| Update observed
variable with one of
| previous methods.
3 ¥ ¥
2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

W B
WUIRUIUT

Unobs.

One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

W B
WUIRUIUT

Unobs.

One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
P .
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable

Anderson: Parameter Estimation with Filters: IMAGe TOY 35 2/24/06



Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
P .
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable

Anderson: Parameter Estimation with Filters: IMAGe TOY 36 2/24/06



Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
P .
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

0 4% | | * | is prior joint distribution
8 4 P e TR
| | One variable Is observed.
*xk *  *
| Compute increments for
, | prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

%4.2% T S * | is prior joint distribution.
c ‘
| | One variable Is observed.
KRk ok
| Compute increments for
, | prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

o 4 g T
< 35 |
> 3 *
| —
% %
Increments
| e
* %
2 0 2

Observed Variable
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Assume that all we know
IS prior joint distribution.

One variable is observed.

| Using only increments

guarantees that if

{ observation had no

Impact on observed

1 variable, unobserved

variable is unchanged

1 (highly desirable).
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Ensemble filters: Updating additional prior state variables

5— | | Assume that all we know
% IS prior joint distribution.
O be | | 3%
g45 + 7 Howshouldthe
IR | x unobserved variable be
i | o impacted?
n 4 It
c * * . .
3 First choice: least squares
)
n 3.5
ol Equivalent to linear
- .
3 | regression.
3t — e
chemins =« ** | Same as assuming
5 0 5 4 binormal prior.

Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
% distribution of two
8k variables.
f>f5 4.5
[ i How should the
S unobserved variable be
2 4* impacted?
)
c . .
§ 35 First choice: least squares
o
S | Begin by findingeast
3% * : squares fit.
Increments  #*—% S '
e e -
* —
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior

@ distribution of two

O :

8k variables.

c I

g 4.5

QK Next, regress the

(‘DE observed variable

= 4* increments onto

o increments for the

§ 35 unobserved variable.

o

S X Equivalent to first finding
3 ; : Image of increment in

pcrements * ** | joint space

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior

@ distribution of two

O :

8k variables.

c I

g 4.5

QK Next, regress the

(‘DE observed variable

= 4* increments onto

o increments for the

§ 35 unobserved variable.

o

S X Equivalent to first finding
3 ; : Image of increment in

pcrements * ** | joint space

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior

@ distribution of two

O :

8k variables.

c I

g 4.5

QK Next, regress the

(‘DE observed variable

= 4* increments onto

o increments for the

§ 35 unobserved variable.

o

S X Equivalent to first finding
3 ; : Image of increment in

icrements * ** | joint space

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior

@ distribution of two

O :

8k variables.

c I

g 4.5

QK Next, regress the

(‘DE observed variable

= 4* increments onto

o increments for the

§ 35 unobserved variable.

o

S X Equivalent to first finding
3 ; : Image of increment in

pcrements * ** | joint space

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior

@ distribution of two

O :

8k variables.

c I

g 4.5

QK Next, regress the

(‘DE observed variable

= 4* increments onto

o increments for the

§ 35 unobserved variable.

o

S X Equivalent to first finding
3 ; : Image of increment in

pcrements * ** | joint space

-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

pcrements —* . * | Finally, multiply by prior

—9 0 5 4 sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

pcrements —* . * | Finally, multiply by prior

—9 0 5 4 sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

pcrements —* . * | Finally, multiply by prior

—9 0 5 4 sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

pcrements —* | Finally, multiply by prior

—9 0 5 4 sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

pcrements —* . * | Finally, multiply by prior

—9 0 5 4 sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Now have an updated

% ¥ (posterior) ensemble for
S x ¥ | the unobserved variable.
S 45 * 1.
L 4.5 .
&)
S X \
n 4 | -
S | 4
(b
c !
? 3.5 * o
O |
= !
> s L

-20214

Obs.
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Ensemble filters: Updating additional prior state variables

5 | | Now have an updated
% ¥ (posterior) ensemble for
S x ¥ | the unobserved variable.
Q45 * *
> i | - :
Q : Fitting Gaussians shows
(‘045 A | | that mean and variance
8 % 4 have changed.
c !
235 * It
O Prior State Fit |
5 J
*
-2024

Obs.
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Ensemble filters: Updating additional prior state variables

5 | | Now have an updated
Posterior Fit | | (posterior) ensemble for
| the unobserved variable.

Fitting Gaussians shows
| that mean and variance
- 4| | have changed.

| Other features of the

Prior State Eit | ? prior distribution may
l also have changed.

X%

-20214
Obs.

Unobserved State Variable
D
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Ensemble filters: Updating additional prior state variables

CRITICAL POINT:

> _Posterior Fit, |
* ¥ | Since impact on
4.5 : | unobserved variable is
. simply a linear

| regression, can do this
' 1 | INDEPENDENTLY for
| any number of

| unobserved variables!

o
CL

Prior State Fit |
:L Could also do many at

- once using matrix
*ﬁ:’g algebra as in traditional
2024 Kalman Filter.

Obs.

Unobserved State Variable
D

w

Anderson: Parameter Estimation with Filters: IMAGe TOY 56 2/24/06



Ensemble filters: Updating additional prior state variables

Two primary error sources:
These ae major issues dr parameter estimation.

1. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation over range of prior.

2. Sampling error due to noise.
Even if linear relation, sample regression coefficient imprecise.

May need to address both issues for good performance.
Parameter Estimation Questions:

1. Are parameters ‘linearly’ related to state and observations?
2. Are parameters strongly or weakly related to observations?
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Regression sampling error and filter divergence

3 _ _ _ _ Suppose unobserved
© SD=0.83 state variable is known to
S MN=0.12
[ vl ! be unrelated to set of
f>5 observed variables.

O 1
% Unobserved variable
= 0 | should remain
GE) _1 | | unchanged.
i |
8 -2 I ] Let observations be of
S Antarctic wind velocity.
-3
| State variable is

5 0 5 NCAR temp.
Observed Variable
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Regression sampling error and filter divergence

w

O SD=0.88 |[ After Obs. 1

= MN=0.12

s of i * o
c>T$ %

> K
= ¥ ¥
o * ¥y K
“ 0 kT
@) ¥, ¥

o *
2_1 * *

% ¥* %k

b ¥* ¥

e

c

>

Sample Correl. = 0.49

e

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Finite samples from joint

| distribution will have
| non-zero correlation

(expected |corr| = 0.19

| for 20 samples).

After one observation,

1 unobs. variable mean and

S.D. change.
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Regression sampling error and filter divergence

Unobserved State Variable

w

N

After Obs. 21

Sample Correl. = -0.24

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

Unobserved mean
| follows arandom walk as

more obs. are used.
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Regression sampling error and filter divergence

3[Sp=088 |[After Obs. 41

Ak
1| *"*

Unobserved State Variable

Sample Correl. = 0.01

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

3 _ - _ Suppose unobserved
SD=0.88 | After Obs. 61 state variable is known to
1 be unrelated to set of
observed variables.

%* ¥
* %k .
X*;ﬁ?*al;k * Unobserved variable
ok * | should remain unchanged

| Unobserved standard
| deviation is persistently
decreased.

Unobserved State Variable

Sample Correl. = 0.26

ﬁ*m * i Expected change in |SD|

_2 0 5 IS negative for any non-
Observed Variable Z€ro sample correlation!
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Regression sampling error and filter divergence

3[Sb=0.88 |[After Obs. 81

ale,,gkale

****gl* I

Unobserved State Variable
(@)

Sample Correl. = 0.25

frmmmmer |
=3
-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

3[Sb=0.88 |[After Obs. 101

Unobserved State Variable

Sample Correl. = -0.29

oo

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Estimates of unobs.

| become too confident

| Give progressively less
I weight to any meaningful

observations.

1 End result can be that

meaningful obs. are
essentially ignored.
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Regression sampling error and filter divergence

O
0 ~

O
o))

Expected |Sample Correlation|

Q.4F o A
10 Members

0.2karSFn 20 Members |
40 Members
0 _ 80 Members

0 0.5 1

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

|||||||||||||||||||||||||||||||||||||||||||||||

Plot shows expected
absolute value of sample
correlation vs. true
correlation.

Errors decrease with
sample size and for large
Ireal correlations].

Do parameterlavelarge

or small &pected corre-

lation with obsergations?

True Correlation
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Ways to deal with igression sampling error:

1. Ignore it: if number of unrelated observations is small
and there is some way of maintaining variance in priors.

2. Use larger ensembles to limit sampling error.

3. Use additional a priori information about relation between
observations and state variables.

4. Try to determine the amount of sampling error and correct for it.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
. Distance from Observation (Km?)
Atmospheric assimilation problems.

Weight regression as function of horizordatancefrom observation.
Gaspari-Cohn: 5th order compactly supported polynomial.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
Distance from Observation (Km?)
Can use other functions to weight regression.

Unclear whatlistancemeans for some obs./state variable pairs.
Referred to aEOCALIZATION.
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Phase 3: Generalize to gegpltal models and obse&twons

Dynamical system governed by (stochastic) Difference Equation:

dxt = f(xt, t) + G(xt, t)dBt, t=0 (1)
Observations at discrete times:
Y=h(X.t ) +vi e k=12 ...t 1>t2t5 (2)
Observational error white in time and Gaussian (nice, not essential).
v - N(O,R) (3)
Complete history of observations is:
Yo ={y; =1} (4)
Goal: Find probability distrilstion for state at time t:
P(X 1 Yt) ()
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Phase 3: Generalize to gegpltal models and obse&twons

State between observation times obtained from Difference Equation.
Need to update state given new observation:

p(X tk‘Ytk) = p(x, tk‘yk’ Ytk—l) (6)
Apply Bayes rule:
LY. ) = p(yk‘xk,Y )p(X, tk‘Ytk . -
k‘ 2 p(yk‘Ytk .
Noise is white in time (3) so:
p(yk‘xk, Ytk—l) = p(yk‘xk) (8)

Integrate numerator to get normalizing denominator:

PO Ve, 07 [ POKPIPO §Yy Jdx (©)
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Phase 3: Generalize to gegpltal models and obse&twons

Probability after new observation:
p(yk‘x) p(x t ‘Y

10
p%’ | tkD Ip(y &Pty | Yy E( )

Exactly analogous to earlier derivation except that x and y are vectors.

EXCEPT, no guarantee we have prior sample for each observation.

SO, let's make sure we have priors by ‘extending’ state vector.
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Phase 3: Generalize to gegpltal models and obse&twons

Extending the state vector to joint state-observation vector.

Recall: Yy = h(xk, tk) V) k=1 2 ... tk+ 1>tk2t0 (2)

Applying h to x at a given time gives expected values of observations.
Get prior sample of obs. by applying h to each sample of state vector x.

Let z = [X, y] be the combined vector of state and observations.
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Phase 3: Generalize to gegpltal models and obse&twons

NOW, we have a prior for each observation:

p(yk‘z) p(Z, tk‘ tk
Vg = _
P %Y, 0 J'p(yk\é)p(&tk\Ytk_l

(10.ext)
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8ety

Let vy, be composed of s subsets of observatiogg: = {y&, yﬁ, yi}

Observational errors for obs. in set | independent of those In set |.

Then:p(y(2) - 1 P(%(2
=1

Can rewrite (10.ext) as series of products and normalizations.
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8et y

Implication: can assimilate observation subsets sequentially.

If subsets are scalar (individual obs. have mutually independent error
distributions), can assimilate each observation sequentially.

If not, have two options:
1. Repeat everything above with matrix algebra.

2. Do singular value decomposition; diagonalize obs. error covariance
Assimilate observations sequentially in rotated space.
Rotate result back to original space.

Good news: Most geophysical obs. have independent errors!
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

1. Use model to advanessembl€3 members here)
to time at which next observation becomes available.

Ensemble state Ensemble state at
estimate after using time of next obser-
previous observation vation (orior).
(analysis.

/ *
N By
*
t i1
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.

y Theory: observations’

from instruments with
uncorrelated errors can
\be done sequentially.)

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

3. Getobserved valuandobservational error distribution
from observing system.

*
*e
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

N TN

< i | — - : — :

>y

(Note: Difference between
different flavors of ensent-
ble filters is primarily in

@bservation Increment. y

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

?
|

(Theory: impact of
observation increments on
each state variable can be
handled sequentially!

s 4 \_

*
*
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How an Ensemble Filter Wks for Geopiasical Data Assimilation

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

40 Prior ensemble in green.

e, SR T Observing all three state
ChEde®o G070 variables.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.

M
o B I‘,l . -
: Observation In red.
.t \\": ‘.,
ol ST
‘\\ .- ‘\‘ - 'll - ','
. _ N - . _ .
. o o : e, B T,
ST o L 3 Prior ensemble In green.
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.

Observation in red.

Prior ensemble in green.

.

R

-
.t
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e,

-
-

4

H

<
S
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.

Observation in red.

Prior ensemble in green.

.
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.

Ensemble is passing through
unpredictable region.
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Phase 3: Generalize to gegpltal models and obse&twons
Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.
Part of ensemble heads for

one lobe, the rest for the
other.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.
The prior is not linear here.

Standard regression might be
pretty bad.

20
Covariance inflation might
also be bad, pushing
ensemble off the attractor.
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Phase 3: Generalize to gegpltal models and obse&twons

Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.
The prior is not linear here.
On the other hand...

20 Hard to contrive examples
this bad.

Behavior like this not
apparent in real assimilations.
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Phase 4. Quick look at real atmospheric applications...

Results from CAM Assimilation: Januar2003

Model:
CAM 3.1 T85L26
U,V, T, Q and PS state variables impacted by observations.
Land model (CLM 2.0) not impacted by observations.
Climatological SSTs.

Assimilation / Prediction Experiments:
80 member ensemble divided into 4 equal groups.
Adaptive error correction algorithm.
Initialized from a climatological distribution (huge spread).
Uses most observations used in reanalysis
(Radiosondes, ACARS, Sat. Windsno, surface obs. or retrievals
Assimilated every 6 hours; +/- 1.5 hour window for obs.
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NCEP

DART/CAM

Difference.
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NCEP reanalyses, 500mb GPH, Jan 02 00Z Af ter 1 day

Geopotential height agpm
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NCEP reanalyses, 500mb GPH, Jan 08 00Z Af ter 7 dayS .

Geopotential height gpm
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6-Hour Forecasand Analysis Observation Space Temperature RMS

RMS Error: Tropics
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RMS Error: Northern Hemisphere
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6-Hour Forecasand Analysis Observation Space Wind RMS

RMS Error: Tropics RMS Error: Northern Hemisphere
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Finally..., Parameter Estimation.

Suppose model is governed by (stochastic) Difference Equation:
dxt = f(xt, t;u) + G(xt, t;w)dBt, t=0 (1)

where u and w are vectors of parameters.
Also, suppose we really don’t know values of parameters (very well).
Can use observations with assimilation to help constrain these values

Rewrite (1) as:
dxg = 2(x, 1) + G (x, )dB,, 120 (2)

where the augmented state vector includes,»>and w.

Model is modified so values of u and w can be changed by assimilation
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From ensembile filter perspedi

Just add any parameters of interest to the model state vector;
Proceed to assimilate as before.

Possible difficulties:
1. Where are parameters ‘located’ for localization?
2. Parameters won’t have any error growth in time
(unless we add some): could lead to filter divergence.
3. Parameters may not be strongly correlated with any observations
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Testing Rrameter Estimation in Lorenz-96 4@rable Model

Variable size low-order dynamical system
N variables, %, Xo,..., Xy

Use N = 40, F = 8.0, 4th-order Runge-Kutta with dt=0.0

12 T

10

| | | | | | |
o 50 100 150 200 250 300 350 400

Time series of x
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Testing Rrameter Estimation in Lorenz-96 4@rable Model

dXi [ dt = (Xi+1 - Xi_z)xi_l - Xi +F =1, ...40 (1)

(cyclic indices).

Have observations of functions of state variables.
Generated by model with fixed but unknown value of F.

Recast F as a state variable.

Single additional variable, or 40 as follows:
dXj/ dt = (X+1 - Xj2)Xj1 - Xj + K (2)

dFR/dt = N(0,0isd (3)

Can observations of some function of state variables constrain F?
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Testing Rrameter Estimation in Lorenz-96 4@rable Model
20 Member Ensemble (10 Plotted).

40 Randomly Located Observations (interpolated state) every step.
Truth in Yellow (8.0) Ensemble
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Intriguing Fact: Best assimilations of state come whewdres,
even better than when I5 set to exact value, 8!
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Climate Model Rrameter Estimation via Ensemble Data Assimilation

T21 CAM assimilation of
gravity wave drag effi-
ciency parameter.

Oceanic values are noise
(should be 0).

(5 9IO 1éO 270 O< efficiency< ~4 sug-
H | D gested by modelers.
-10 -5 0 5 10

Positive values over NH land expected.
Problem: large negative values over SH land near convection.
Reduces model bias, but for ‘Wrong Reason'.

Assimilation tries to use free parameter to fix ALL model problems
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Ensemble Assimilation / Parameter Estimation Issues

1. Dealing with sampling noise.
A. How to localize.
B. What are expected correlations of obs. with parameters?
C. If these are small, can things be ‘rotated’ to get signal?

2. What question is being answered?
A. Filters try to minimize RMS error.
B. Hard to specify complex prior constraints on parameters.
C. Model designers may be asking a different question.

3. Observability.

A. How much can one get from available obs?
B. Is it hard to estimate many parameters at once?
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