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Some hybrid deterministic/stochastic systems

1. Microscopically active interface or boundary layer interacting
with an adjacent " bulk” fluid phase.

2. Rheology of polymers: micro-macro models.

Fluids equations at the macroscopic level coupled with kinetic or
stochastic equations ruling the evolution of the fluid microstruc-
ture at the meso- or micro- scale, e.g. FENE-type models or
coupled Monte Carlo with fluid dynamics.

3. Stochastic Phase-Field models.

Solidification, dendritic growth in alloys.



Surface processes: Catalysis, Chemical Vapor Deposition, epi-

taxial growth, etc.
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Atmosphere/Ocean applications: Tropical convection.

High precipitation
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“Particles” and sub-grid scale effects: [Majda, Khouider,

PNAS 2001]
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Cell Biology: Epidermal Growth Factor binding/dimerization

Early events of EGF signaling

Spatial organization of EGF receptors can

influence characteristics (dynamics) of
- EGF receptor dimerization

- EGF binding

- Intracellular activation and signaling
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X = F[X,c] (PDE/ODE system)
OEf(c) = FELxf(oc) (stochastic model)

X: Fluid/thermodynamic variables defined on top grid

Lx: generator of the subgrid stochastic process o defined on
the lower grid (subgrid)



Some challenges and questions:

e Disparity in scales and models; DNS require ensemble av-
erages for a large system.

e Model reduction, however no clear scale separation: need
hierarchical coarse-graining.

e Deterministic vs. stochastic closures; when is
important?

e Error control, stability of the hybrid algorithm; efficient
allocation of computational resources: adaptivity, model
and mesh refinement.



MODEL SYSTEM

X = f(X,o) (ODE)
OFEf(c) = FELxf(oc) (stochastic lattice model)

Lx: generator of a spatial stochastic process o:(x).

f(x) = f(x,7): scalar bistable, saddle node, or spatially homoge-
neous complex Ginzburg-Landau equation (Hopf bifurcations),
etc.

e h = h(X): external field to the microscopic system.
e =+ oi(x): area fraction (spatial average).

Special case: well-mixed, catalytic reactors (CSTR)

[joint work with A. Majda (Courant) and A. Sopasakis (UMass)]



I. Background material on Markov processes and Monte
Carlo simulation

1. Discrete-time Markov Chains: " Stochastic, discrete-time dy-
namical systems”

Stochastic process {X; :t=1,2,3,...,n,...}, t ~ equi-spaced time
intervals; finite state space >

Xe=xeX={1,2,...m}



Past States=x_k
k=1,2,...,k-1

Present State=x

Possible Future
State=y
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Conditional Probablity: (dependent random variables)

P(AN B)

P(AIB) = —5

Markov property:
P(Xip1=y| Xe =2, X1 =241, ..., X1 =21) = P(X441 =y | Xt = x)

Transition probability matrix: P = {p(z,y) }syes,
p(z,y) = P(Xp1 =y | Xi =x)

Note: p(x,y) > 0 and Zyezp(ﬂc,y) =1

n-step transition probability matrix: P" = {p"(z,y) }syes.
p"(x,y) ‘= P(Xitn = y| Xt = )



Evolution of the probability distribution:
p°(z,y) = P(Xo =y|Xo=12)
- ZP(XQZy,X1:z|Xo=:E)

z
— ZP(X2=y|X1=z,Xo=x)P(X1=z|Xo::1;)

z

= ZP(X2=y|X1=z)P(X1=Z\X0:93)

= ) (@ 2)p(y)

Chapman-Kolmogorov equation: P* = P x P x ...P (n-fold prod-
uct) and pP*tm = prpm je.

P y) =Y p" (@, 2)p" (2, y)

ZEX



Construction of sample paths:

assume X = {z1,x2,...,Tm}; If X =z,

( 1, if ng(m7x1)

it <
Xt—l—l — < 5[32 I p(w7x1) <U = p(xﬁxl) +p(x,$2)

Tz If p(z,z1) +p(x,22) + ... + p(z,20m1) < U< 1

where U is a uniformly distributed random variable in (0,1).



Random walk on a (periodic) lattice
{& :1=1,2,...} i.i.d random variables with
P& =+1)=p", pr+p =1
Define
Xo=) &=Xn1+6
=1

Then X, is a Markov chain, i.e. satisfies the Markov property
(Exercise 1).

Transition matrix:

pt, if y=ax+1
p(z,y) =

0] otherwise



Discrete-in-time stochastic dynamical systems
{X1,& i=1,2,...} independent random variables

Define
Xn—|—1 — f(Xm gn)

where f = f(xz,y) a given deterministic function. Then X,, is a
Markov chain, i.e. satisfies the Markov property (Exercise 2).

- Analogous to deterministic discrete evolution

X1 = f(Xn)

Transition matrix:

pn(z,y) = P(fu(z,80) = y)



Some useful definitions

1. We say that x,y € > communicate if

p"(x,y),p"(y,x) >0

for some m,n. If all states communicate the Markov chain is
called irreducible.

2. Let d(x) the greatest common divisor (called the period of
the state x) of all Kk > 1 such that

P(Xt—l-k: =z|X;=uz)>0.
A Markov chain is called aperiodic if each state has period 1.

3. If x € X is revisited with probability 1 at some finite time is
called recurrent; otherwise the state is called transient



Stationary distributions , long-time behavior and ergodicity
Let r ==n(x) >0, Zmez”(x) = 1 a probability distribution.

If the initial state Xg is random and distributed according to m,
then the distribution of X, is

P(Xy=y|Xo~m) = m()p"(z,y) = nP"

x

e m is stationary (invariant) if #P" = & for all n; true if 1 is
an eigenvalue of the matrix P with eigenvector «:

P =7

e If X; is aperiodic and irreducible then
lim p"(z,y) = w(y), for allz (Ergodicity)

n—oo

e For simply irreducible chains we have:
1 n
lim = pi(x,y) =7(y), for all z  (weak ergodicity)

n—oo T
t=1



2. Continuous-time Markov Chains

Stochastic process {X; : t > 0.} taking finitely many values on
the state space >: X; =x € >.

Markov property:
PXiys=y| Xs=z, Xy =2,,0<u<s) = P(Xps =y | Xs =)

Transition probability matrix at time ¢: P = {p(¢; z,y) }zyex,
p(tix,y) ‘= P(Xiys =y | Xs = @)
Note: p(t;x,y) > 0 and Zyezp(t; r,y) =1

Chapman-Kolmogorov equation: P, = PP, i.e.

p(t+siz,y) =Y pltiz, 2)pls; 2 y). (C-K)

ZEX



Continuous vs. Discrete time Markov Chains

Discretization: The C-K relation implies that X,, := X, is a
discrete-time Markov Chain with transition probability matrix
p(x,y) = p(h;z,y). Hence X, is a discretization of the continu-
ous time Markov Chain X;.

Residence time 7,: time spent by the process X; at x; random
waiting time between consecutive jumps.

Markov property implies:

P(rg >t+s|1ma >s) = P(1: > t)
i.e. 7, is a "memoryless” distribution! Hence
Plry,>t+s) =P >t+s,7: >5) = P(7: > t)P(72 > s)
thus
P(re > t) = exp(=A(z)t), A(z) >0



We can now define the transition matrix—corresponding to a
"skeleton” Markov Chain

p(z,y) = P(X:, =y|Xo=2),y# =
we set p(z,x) = 0; note that we easily get that zyp(a:,y) = 1.

Define the

q(z,y) = Mx)p(z,y) ,x # y
and

a(z,2) = =) q(z,y) = —A()

yF
denote the corresponding matrix Q = (q(z, y)zyes)-

Building blocks of the continuous time chain:

q(x,y) or equivalently A(x),p(z,y) for all z,y € X.
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Construction of sample paths from the transition rates q(z,vy):
Step 1: Construct all residence times 7, at each location z: ex-
ponentially distributed with rate A(z) = —q(x, ).

Step 2: Determine the next move, starting at ¢t = 0 at the state
x € > using the "skeleton” Markov Chain:

X =x, for 0<t< Ty
assume >~ = {1,2,...,m};then

(1, if U< LB = p(z,1)

; q(z,1) q(z,1)+q(z,2)
2 i Sy <U S 250

| ™ if q(x, 1)+Q($_2q)(‘g|;m)‘|‘Q(fEm 1) <U<1

where U is a uniformly distributed random variable in (0,1).

Step 3: From Step 2 we obtain a new location y € 2; then
Xi=y, for m<t<m+my
and proceed as before.



C-K and Master equations:
Forward C-K: p(t + h;z,y) = > _p(t; z, 2)p(h; z,y)

Can also show: W‘t:O = q(z,y)

Thus,
M Zp(t z,2)q(z,y)

zZEX
or equivalently

M Zp(t x,2)q(z,y) —p(t;z,y)q(y,z), (master equations)

zZEX
27y



Generators:
Observables: u(x,t) = E.f(X;) = Zyez F(yp(t;z,y).

d _ dp(t; z,y)
SEf(X) =Y )T
YeEE
= > > ez i)
YEL zEX
= D etz Y a@Efe) - )]
z€X YeEX JyF=2
- E:L'Lf(Xt) ) hence
CE(X,) = BeLE(X)

where L the generator of X;: Lf(z) = ny q(z,y) (f(y) — f(z))

e The generator completely determines the Markov process X;.



Example 1: Continuous-time random walk on a lattice
{& :1=1,2,...} i.i.d random variables with
P =+1)=p", pr+4+p =1
{mx : k= 1,2,...} i.i.d exponentially distributed non-negative ran-
dom variables (7 also independent of &,71=1,2,...,k) with
P(ry>t) =exp(=Xt), A>0

Consider the sequence of pairs

(anzgi,Tn:ZTk)

k=1
(X, is a Markov Chain—see Example 1—also the pair is a Markov
Chain) and define

XtZXn, if Tn§t<Tn+1
Then X; is a continuous time Markov chain, i.e. satisfies the
Markov property (Exercise 3).

Generator:

Lf(z) =X (f(z+1) — f(@)) +2p (f(z — 1) — f(=))

Example 2: Birth-death processes (see next talk).



Markov process with random initial data, u = p(x) ,z € X:

pPi(y) = Zu(w)p(t; z,y) = P(X; = y| Xo ~ u)

xT

Invariant (stationary) distribution: =P, = =« for all .

Since € = PQ, we have that , hence

D w@A@)p(e,y) = T(1)A®)
A stronger condition is detailed balance:

m(z)A(z)p(z,y) = 7(x)a(x,y) = 7(y)aly,x) = 7(y) A(y)p(y, z)

Ergodicity: unique 7 such that limyeeo uFP; = w for all pu.



1. Remarks on Monte Carlo simulation
1. Markov Chain Monte Carlo (MCMC)
Task: sample from a given a probability distribution 7 = (7 (x))zes.

Idea: construct a discrete-time Markov Chain with P = (p(z,y))zyecs
having 7 as an stationary (invariant) distribution. Then generate

7 using ergodicity.

e Define p(x,y) = r(z,y)a(z,y)

o R = (r(z,y))zycs: transition probabilities for a proposed
move y

e a(x,y): acceptance probability

a(z,y) __ w(y)r(z,y). ;
° agn) = ) detailed balance.

Often a(z,y) << 1 (e.g. low temperatures); many rejected
moves hence convergence to « is slow. One way to resolve
this....



2. Continuous Time Monte Carlo (CTMC)

Construct a continuous-time Markov Chain with invariant mea-
sure m;

e the random jump time is known (exponentially distributed,
etc.) and defines the time step At of the simulator.

e NO rejected moves

e one drawback: it may be costly to generate for a given x
all g(x,y) > 0 for all y's accessible from =x.

e CTMC is "real” dynamics.

Ref: Gillespie (chemical reactions); Bortz, Kalos, Lebowitz
(Ising-type systems)



Pseudo-algorithm

a,/a,

Random number
Nenerator

a;/a,

Step 1: Construct all residence times 7, at each location x: ex-
ponentially distributed with rate A(x) = —q(x, z).

Step 2: Determine the next move, starting at ¢t = 0 at the state

xeX={12,..,

m} using the "skeleton” Markov Chain:

Xe=x, for 0O0<t<Ty

1, if U<_‘1§§1) = p(z,1)

@l o(2. 1) +q(2,2)
2 it Znn <UsTEen

q(z,1)+q(z,2)+...+q(x,m—1) <U<1

m if g ey

U: uniformly distributed random variable in (0,1)
Step 3: From Step 2 we obtain a new location y € 2; then

Xt =y, for Tx§t<7x+7-y

and proceed as before.



2. _ Markov Chains with two time scales—Stochastic Aver-
aging
Discrete-time Markov Chain with transition probability
P =P+ eQ, e<<1

P = (p(x,y))syex: transition probability matrix
Q = (p(z,y))zyes: a transition rate matrix
If P is irreducible (more general results exist!), the k-step tran-
sition matrix is expanded as:

(PYF =P 4 Wg(k) + e (ek) + eWi (k) + O(€?)

. v is the invariant distribution of P.
P, (ck): slow time-scale dynamics.
Wi (k): initial layer terms

e Related results for contin.-time Markov Chains and SDE.

e Ref: In math, Khasminskii, Kurtz, Papanicolaou,... In
EE, Phillips and Kokotovic,... In AOS, Majda, Timofeyev,
Vanden-Eijnden,... Books: Yin and Zhang '04,...



3. Stochastic lattice dynamics—Ising Systems
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- Spin: o(xz) € {0,1} at the lattice site z € Z¢ (vacant vs.
occupied sites).

- Potts, Heisenberg models.

- Spin configuration: o = {o(z) | x € A C Z}, |A\| = N: total
number of lattice sites.

Hamiltonian: Hy (o) = —2 Zm&y J(z,y)o(z)o(y) +hY . o(x)

- h: external field )
- J: potential with interaction range L.




Canonical Gibbs measure:

at the inverse temperature g = %

1

pap(o = o0) = - &P { - BHN(UO)}PN(U = 00)
AWG;

[Probability of the configuration og]

Partition function: Z, 3 = ZUO exp { — 6HN(00)}PN(0 = 00)

Prior distribution (no interactions, hight temp.):

Pn(o = 00) = MyenP(o(x) = oo(x))
where
1 1
Plo(@)=1)=5 and P(o(x)=0)=".

i.e. the prior distribution is a product measure of Bernoulli dis-
tributions with parameter a.



Dynamics

A. Spin Flip — Adsorption/Desorption
B. Spin Exchange — Surface diffusion

wiomion  deeorptlon  ciffnddon

Pine Lattice L f
FH—H—H—H+H—¢—H—H4—!+H+H—H—H—H#—!—E¢C:FH—H—FFH—¢+FH4—H]
1234567.q

Markov Chain modeling with state space

2_ = set of all configurations o



A. Spin Flip—Adsorption/Desorption
Spin flips occur at each lattice site z in [t,t+ At] with probability
c(z,0) At + O(AE?)

Generator: Lyf(o) =) _ c(z,0)[f(c”) = f(o)].

Transition rate: c(x, o)

Detailed balance law:
c(x, o) exp ( — BH(J)) = c(z,0") exp ( — BH(J”“"))

o”®. configuration after a spin flip at =z.

- Spin flip rate (Metropolis-type dynamics):

c(z,0) = V(=LA H(0)),

- A;H(o) = H(o") — H(o).
- (B> 0: Inverse temperature.
- Typical choices of W's are:

W (r) = (1 + e)! (Glauber dynamics).
W(r) =e " (Metropolis dynamics).




Arrhenius adsoprtion/desorption dynamics:

1234567.9

o(x) =0 or 1: site z is resp. empty or occupied.

Generator: Lxf(o) =) c(z,0, X)[f(6%) — f(o)]
Transition rate: c¢(z,0,X) = copexp [— ﬁU(x)}

U(x): Energy barrier a particle has to overcome in jumping from
a lattice site to the gas phase.

- U(x) =U(z,0,X) = Zz#xJ(ac—z)a(z) — h(X).

- strong interactions/low temperature — clustering/phase
transitions




B. Spin Exchange Dynamics—Surface diffusion.

e Dynamics: Sequence of spin exchanges with nearest neigh-

bors.
- Spin exchange rate (Metropolis-type dyn.):

C(x7 Y, 0) — w(_ﬁAJT,yH(O_))a

- Dy H(o) = H(o@¥)) — H(o).
o(@¥):config. after a spin exch. between z,y.
- Detailed balance.

- Typical choices of W's are:

W(r) =2(1+4e€")"! (Kawasaki dynamics).

W(r) = e (Metropolis dynamics).
- Arrhenius dynamics.




