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Nomenclature
Response variable:

Predictor  variable:

• Each           is normally distributed about 

• Each            is known exactly

– known dependence

REGRESSION:     FIND 



Linear Regression – I

• The set of                                            which
 minimizes χ2  is the maximum likelihood
 estimate of the regression parameters

• Assume                                                           is
  linear in a: General Linear Least-Squares

• If        is also linear in x: Linear Regression 



Linear Regression–II

Assume and minimize χ2:

Normal Equations:



Linear Regression–III

– Correlation Coefficient



Linear Regression–IV



Multiple Linear Regression–I
• Centered and normalized variables:

• Model: 

• Normal equations:



Multiple Linear Regression–II
• Two predictors (note degeneracy at r12=1):

• Multiple correlation coefficient:

• Minimum useful correlation:



General Linear Least-Squares

• Minimize:



Regularization via SVD

•  Least-squares “solution” of                            is

•  “Principal Component” regularization:



Partial Least-Squares
• Involves rotated principal components (PCs):
   [orthogonal transformation looks for “optimal” 
    linear combinations of PCs]

• “Optimal” = (i) rotated PCs are nearly uncorrelated
                     (ii) maximally correlated with response

• Rotation is done in a subspace of N leading PCs;
   N is determined by cross-validation

• Canned packages available

• Performs better than PCR on large problems



Didactic Example–I (Lorenz ‘63)



Lorenz-63 Example (cont’d)
• Given short enough Δt, coefficients of the Lorenz
    model are reconstructed with a good accuracy for
    sample time series of length as short as T≈ 1

• These coefficients define a model, whose long
    integration allows one to infer correct long-term
    statistics of the system, e.g., PDF (application #1)
• Employing PCR and/or PLS for short samples is
   advisable

• Hereafter, we will always treat regression models
   as maps (discrete time), rather than flows (conti-
   nuous time). Exception: Linear stability analysis



Didactic Example–II (Triple well)

• V(x1,x2) is not polynomial

• Polynomial regression
    model produces time
    series, whose statistics
    are nearly identical to 
    those of the full model

• Regularization required 
   for polynomial models of
   order ≥ 5



Multi-level models – I

Main (0) level:

Level 1:

… and so on …

Level L:

• ΔrL – Gaussian random deviate with appropriate var. 
• If suppress dependence on x in levels 1–L, then the 
      above model is formally identical to an ARMA model

• Motivation: serial correlations in the residual



Multi-level models – II
• Multiple predictors: N leading PCs of the field(s) 
    of interest (PCs of data matrix, not design matrix!)

• Response variables: one-step [sampling interval]
    time differences of predictors

• Each response variable is fit by an independent 
   multi-level  model. The main level is polynomial 
   in predictors; all others – linear



Multi-level models – III
• Number of levels L is such that each of the
  last-level residuals (for each channel corresponding
 to a given response variable) is “white” in time

• Spatial (cross-channel) correlations of the last-level
   residuals are retained in subsequent 
   regression-model simulations

• Number of PCs (N) is chosen to optimize the 
    model’s performance

• PLS is used at the main (nonlinear) level of each
   channel



NH LFV in MM’93 Model – I
Model (Marshall and Molteni 1993):

• Global QG, T21, 3-level with topography; 
    perpetual-winter forcing; ~1500 degrees of freedom

• Reasonably realistic in terms of LFV 
   (multiple planetary-flow regimes and 
    low-frequency [submonthly-to-intraseasonal]
    oscillations)

• Extensively studied: A popular laboratory tool
   for testing out various statistical techniques



NH LFV in MM’93 Model – II
Output: daily streamfunction (Ψ) fields  (≈ 105 days)

Regression model:
• 15 variables, 3 levels, quadratic at the main level
• Variables: Leading PCs of the middle-level Ψ

• Degrees of freedom: 45 (a factor of 40 less than
    in the MM-93 model)
• Number of regression coefficients:
(15+1+15•16/2+30+45)•15=3165 (<< 105)

• PLS applied at the main level



NH LFV in MM’93 Model – III



NH LFV in MM’93 Model – IV



NH LFV in MM’93 Model – V



NH LFV in MM’93 Model – VI

• There are 37- and
 20-day oscillatory
 signals identified by
  multi-channel SSA

• Composite maps of
  oscillations are computed
  by identifying 8 phase
categories according to M-SSA reconstruction



NH LFV in MM’93 Model – VII
Composite 37-day cycle:



NH LFV in MM’93 Model – VIII
Regimes and Oscillations:

• Fraction of regime days as a function of
   oscillation phase

• RC/∆RC phase speed (both RC and ∆RC are
    normalized so that linear sinusoidal oscillation
    would have a constant phase speed)



NH LFV in MM’93 Model – VIII
Regimes and Oscillations:

• Fraction of 
   regime days

• Phase speed



NH LFV in MM’93 Model – IX

• AO+ and NAO–  are associated with anomalous
    (nonlinear) slow-down of a 37-day oscillation
   trajectory

• AO– is a stand-alone (not associated with the
    oscillation)  persistent “regime”

Regimes and Oscillations:



NH LFV in MM’93 Model – X

Quasi-stationary states
of the deterministic
component of the
regression model 



NH LFV in MM’93 Model – XI

37-day eigenmode
of the regression
model linearized 
about climatology*

* Very similar to composite 37-day oscillation



Conclusions on MM’93 Model
• 15 (45)-variables regression model closely 
approximates 1500-variables model’s major
statistical features (PDFs, spectra, regimes,
transition matrices, and so on) 

• Dynamical analysis of the reduced model
identifies AO–  as the steady state of this model

• 37-day mode is associated, in the reduced model,
with the least-damped linear eigenmode. Its spatial 
pattern and eigenvalues are invariant in 
AO–— climatology direction (quasi-stationary “plateau”)

• 4 (12)-variable model does not work!!!



Observed heights

• 44 years of daily 
700-mb-height winter data

• 12-variable, 2-level model
works OK, but dynamical
operator has unstable
directions: “sanity checks”
required



ENSO – I
Data:

• Monthly SSTs: 1950–2004,
   30 S–60 N, 5x5 grid 
   (Kaplan et al.)

• 1976/1977 shift removed

• SST data skewed: Nonlinearity important?



ENSO – II
Regression model:

• 2-level, 20-variable 
   (EOFs of SST)

• Seasonal variations in 
    linear part of the main 
   (quadratic) level 

• Competitive skill: Currently
    a member of a multi-model
   prediction scheme of the IRI
(http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html)



ENSO – III

• Observed

• Quadratic model 
 (100-member ensemble)

• Linear model
 (100-member ensemble)

Quadratic model has a slightly smaller rms error
of extreme-event forecast (not shown)



ENSO – IV
Spectra:

• SSA

• Wavelet

QQ and QB oscillatory modes are reproduced by the 
model,  thus leading to a skillful forecast

Data Model



ENSO – V
“Spring Barrier:”

• June’s SSTs are
more difficult to predict

• A feature of virtiually
all ENSO forecast 
schemes

• SST anomalies are weaker in late winter through
summer (WHY??), and signal-to-noise ratio is low



ENSO – VI
• Month-by-month stability
 analysis of the linearized
 regression model identifies
weakly damped QQ mode
(with a period of 48–60 mo),
as well as strongly damped
QB mode  

• QQ mode is least damped
in December and is not 
identifiable in summer!



ENSO – VII
Floquet Analysis (T=12 mo): • Period: 52 months

• Damping: 11 months

Floquet modes are related
to eigenvectors of 
monodromy matrix M



ENSO – VIII

V – optimal initial vectors
U – final pattern at τ

ENSO development
and non-normal growth of
small perturbations
(Penland and Sardeshmukh 1995;

Thompson and Battisti 2000)

• Maximum growth:
Start in Feb., τ=10  mo



Conclusions on ENSO model

• Competitive skill; 2 levels really matter

• Statistical features related to model’s dynamical
    operator

• “Linear,” as well as  “nonlinear” phenomenology of
    ENSO is well captured

• SST-only model: other variables? (A. Clarke)



CONCLUSIONS
• General Linear Least-Squares is method well fit,
 in combination with regularization techniques
such as PCR and PLS, for statistical modeling
of geophysical data sets

• Multi-level structure is convenient to implement and
   provides a framework for dynamical interpretation 
   in terms of the “eddy – mean flow” feedback 

• Easy add-ons, such as seasonal cycle

• Analysis of regression models provides conceptual
    view for possible dynamical causes behind the 
    observed statistics



CONCLUSIONS (cont’d)
Pitfalls:

• Models are maps: need to have an idea about
   (time) scales in the system and sample accordingly

• Models are parameteric: functional form is 
    pre-specified

• Choice of predictors is subjective

• No quadratic invariants guaranteed – 
   instability possible
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