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Nomenclature

Response variable:

{y(™M1 (1 <n < N)

Predictor variable:

{x(M} (1 <n < N)

« Each y(n) is normally distributed about

* Each (£, is known exactly

REGRESSION:  FIND NG EN)




Linear Regression — |

minimizes x? is the maximum likelihood
estimate of the regression parameters

* Assume ?’J(x(n)’ ai, ap, ..., CLJ) E

linear in a: General Linear Least-Squares

e If is also linear in x: Linear Regression




Linear Regression—||




Linear Regression—|I|
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Linear Regression—IV

Useful fit (b) An outlier
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(d) Nonlinear dependence




Multiple Linear Regression—|

 Centered and normalized variables:




Multiple Linear Regression—||
 Two predictors (note degeneracy at r,,=1):
= ria2r2, rp —T1271

a1 — , an» —
1 — i, 1 — i,

* Multiple correlation coefficient:

y*Q

y/2
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* Minimum useful correlation:

R2 > 7‘% — ‘7‘2‘ > ‘TE‘ — ‘7“17“12‘




General Linear Least-Squares
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Regularization via SVD

X = U-[diag (w;)]-V"




Partial Least-Squares

* Involves rotated principal components (PCs):
[orthogonal transformation looks for “optimal”
linear combinations of PCs]

* “Optimal” = (i) rotated PCs are nearly uncorrelated
(i) maximally correlated with response

 Rotation is done in a subspace of N leading PCs;
N is determined by cross-validation

« Canned packages available

* Performs better than PCR on large problems




Didactic Example—| (Lorenz ‘63)

series of the Lorenz model

—sxr1 + sxo,

L2 — —L143 re] — L2,

r3 = x1To — bx3.




Lorenz-63 Example (cont'd)

* Given short enough At, coefficients of the Lorenz

model are reconstructed with a good accuracy for
sample time series of length as short as 7= 1

* These coefficients define a model, whose long
integration allows one to infer correct long-term
statistics of the system, e.g., PDF (application #1)

* Employing PCR and/or PLS for short samples is
advisable

* Hereafter, we will always treat regression models
as maps (discrete time), rather than flows (conti-
nuous time). Exception: Linear stability analysis




Didactic Example—lI (Triple well)
dx(t) = —VV(x)dt + o db

* V(x,,x,) Is not polynomial

* Polynomial regression
model produces time
series, whose statistics
are nearly identical to
those of the full model

* Regularization required
for polynomial models of
order =5




Multi-level models — |

 Motivation: serial correlations in the residual

Main (0) level: (IR WA az 0%+ 7(

Level 1:  [CHRRR Wl N R N Epas

...and soon ...
RCNER T — 7 = Atlay 12"+ ... ]+ Arp
* Ar, — Gaussian random deviate with appropriate var.

* |f suppress dependence on x in levels 7—L, then the
above model is formally identical to an ARMA model




Multi-level models — ||

« Multiple predictors: N leading PCs of the field(s)
of interest (PCs of data matrix, not design matrix!)

* Response variables: one-step [sampling interval]
time differences of predictors

« Each response variable is fit by an independent
multi-level model. The main level is polynomial
In predictors; all others — linear




Multi-level models — Il

* Number of levels L is such that each of the

last-level residuals (for

each channel corresponding

to a given response variable) is “white” in time

» Spatial (cross-channel)
residuals are retained |
regression-model simu

* Number of PCs (N) is c
model’s performance

correlations of the last-level
n subsequent
ations

nosen to optimize the

* PLS is used at the main (nonlinear) level of each
channel




NH LFV in MM'93 Model — |

Model (Marshall and Molteni 1993):

* Global QG, T21, 3-level with topography;
perpetual-winter forcing; ~1500 degrees of freedom

» Reasonably realistic in terms of LFV
(multiple planetary-flow regimes and
low-frequency [submonthly-to-intraseasonal]
oscillations)

» Extensively studied: A popular laboratory tool
for testing out various statistical techniques




NH LFV in MM'93 Model — I

Output: daily streamfunction (¥) fields (= 105 days)

Regression model:

» 15 variables, 3 levels, quadratic at the main level

 Variables: Leading PCs of the middle-level W

* Degrees of freedom: 45 (a factor of 40 less than
in the MM-93 model)

 Number of regression coefficients:

(15+1+15216/2+30+45)*15=3165 (<< 10°)

* PLS applied at the main level
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NH LFV in MM'93 Model — IV




NH LFV in MM'93 Model —

SSA spectrum of model PC-1
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(b)
SSA spectrum of model PC-3 SSA spectrum of simulated PC-3
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NH LFV in MM'93 Model — VI

Oscillatory pair

 There are 37- and
20-day oscillatory

signals identified by
multi-channel SSA

» Composite maps of
Osci”ations are Computed 0 0.005 0.01 Fregﬁcgniy (c;)cilc()jday)O.OZS 0.03 0.035
by identifying 8 phase

categories according to M-SSA reconstruction




NH LFV in MM'93 Model — VI

Composite 37-day cycle:




NH LFV in MM'93 Model — VII|

Regimes and Oscillations:

* Fraction of regime days as a function of
oscillation phase

 RC/ARC phase speed (both RC and ARC are
normalized so that linear sinusoidal oscillation
would have a constant phase speed)




NH LFV in MM'93 Model — VII|

Regimes and Oscillations:

* Fraction of
regime days
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Phase Speed

* Phase speed

Phases Phases




NH LFV in MM'93 Model — IX

Regimes and Oscillations:

« AO* and NAO~- are associated with anomalous
(nonlinear) slow-down of a 37-day oscillation
trajectory

« AO- is a stand-alone (not associated with the
oscillation) persistent “regime”




NH LFV in MM'93 Model — X

Quasi-stationary states
of the deterministic
component of the
regression model




NH LFV in MM'93 Model — XI

37-day eigenmode
of the regression
model linearized
about climatology*

* Very similar to composite 37-day oscillation




Conclusions on MM’'93 Model

* 15 (45)-variables regression model closely
approximates 1500-variables model’'s major
statistical features (PDFs, spectra, regimes,
transition matrices, and so on)

« Dynamical analysis of the reduced model
identifies AO~- as the steady state of this model

« 37-day mode is associated, in the reduced model,
with the least-damped linear eigenmode. Its spatial
pattern and eigenvalues are invariant in

AO—— climatology direction (quasi-stationary “plateau”)

-variable model does not work!!!




Observed heights

Data PDF Simulated PDF

* 44 years of daily
7/00-mb-height winter data

« 12-variable, 2-level model
works OK, but dynamical
operator has unstable O vsmins s
directions: “sanity checks”
required

Variance
Variance

Variance
Variance

0.1 A . . 0.1
Frequency Frequency




Data:

* Monthly SSTs: 1950-2004,
30 S-60 N, 5x5 grid
(Kaplan et al.)

¢« 1976/1977 shift removed

« SST data skewed: Nonlinearity important?




ENSO — |l

Regression model:

e 2-level, 20-variable
(EOFs of SST)

» Seasonal variations in
linear part of the main
(quadratic) level

« Competitive sKkill: Currently
a member of a multi-model

prediction scheme of the IRl
(http://iri.columbia.edu/climate/ENSO/currentinfo/SST _table.html)

——— | \O\
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ENSO — Il

 Observed

e Quadratic model

(100-member ensemble)

e Linear model

(100-member ensemble)

3 Histogram Variance
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Quadratic model has a slightly smaller rms error

of extreme-event forecast (not shown)




ENSO - IV

Spectra:

* SSA

2 -2

0 0

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Freq (cycle/month) Freq (cycle/month)

d)

100

* \Wavelet
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QQ and QB oscillatory modes are reproduced by the
model, thus leading to a skillful forecast




ENSO -V

“Spring Barrier:”

e June’s SSTs are
more difficult to predict

* A feature of virtiually
all ENSO forecast
schemes

Calendar month

« SST anomalies are weaker in late winter through
summer (WHY??), and signal-to-noise ratio is low




ENSO —

* Month-by-month stability
analysis of the linearized
regression model identifies
weakly damped QQ mode
(with a period of 48—60 mo),
as well as strongly damped
QB mode

* QQ mode is least damped
In December and is not
identifiable in summer!
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ENSO - VI

* Period: 52 months
* Damping: 11 months

Floquet Analysis (T=12 mo):
x = L(t)x
d=L0H)P, &0)=1I

M = &(T)

Floquet modes are related
to eigenvectors of
monodromy matrix M

100 200 300 400 500 600
Time (months)




ENSO — VI

ENSO development « Maximum growth:
and non-normal growth of _ Startin Feb., 7=10 mo

small perturbations
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Conclusions on ENSO model

« Competitive sKill; 2 levels really matter

 “Linear,” as well as “nonlinear” phenomenology of
ENSO is well captured

 Statistical features related to model’s dynamical
operator

* SST-only model: other variables? (A. Clarke)




CONCLUSIONS

* General Linear Least-Squares is method well fit,
In combination with regularization techniques
such as PCR and PLS, for statistical modeling

of geophysical data sets

* Multi-level structure is convenient to implement and
provides a framework for dynamical interpretation
In terms of the “eddy — mean flow” feedback

» Easy add-ons, such as seasonal cycle

» Analysis of regression models provides conceptual
view for possible dynamical causes behind the
observed statistics




CONCLUSIONS (cont'd)
Pitfalls:

* Models are maps: need to have an idea about
(time) scales in the system and sample accordingly

* Models are parameteric: functional form is
pre-specified

 Choice of predictors is subjective

* No quadratic invariants guaranteed —
instability possible
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