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Motivation: Air/sea fluxes

Ocean and atmosphere 1nteract through respective
boundary layers, exchanging

momentum
energy
freshwater
gases & aerosols
Sea surface winds (“‘eddy averaged™) are an

important determinant of turbulence 1n both
boundary layers

Turbulence feeds back on surface winds, primarily
through surface momentum flux

@ UVic
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Motivation: GCMs

Calculation of air/sea fluxes in GCMs requires:

timestep/gridbox averaged fluxes
in terms of
timestep/gridbox averaged winds

Bulk formulae for air/sea fluxes generally have
nonlinear dependence on sea-surface wind

Averaged surface winds not enough for calculating
averaged surface fluxes

Calculation of averaged fluxes requires full surface
wind pdf

@ UVic
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Motivation: Further Complications

Further Complications:

1. surface fluxes require surface wind speeds
but
GCMs give space-time averaged vector winds

= Motivates development of parameterisation of wind
speed pdf in terms of vector winds

2. Wind speed pdf arises from vector wind pdf through
nonlinear coordinate transformation

= higher order vector wind moments may affect lower
order wind speed moments

@ UVic
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Skewness and Kurtosis

Skewness: measure of asymmetry of pdf

i (7))
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Skewness and Kurtosis

Skewness: measure of asymmetry of pdf

sovie) = ( (%) )

Kurtosis: measure of flatness of pdf
4
skew (x) = <<2j (x)) > —3
std(:l?)
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Sea-Surface Winds: Notation

Notation:

vector wind (u, v)

along mean wind component
cross mean wind component

wind speed (u* + v?) /2

L 2o
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Sea-Surface Winds: Data

Will consider 6-hourly 10m ocean winds from
NCEP/NCAR Reanalysis (1948-2005)
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Sea-Surface Winds: Data

Will consider 6-hourly 10m ocean winds from
NCEP/NCAR Reanalysis (1948-2005)
Essentially identical results obtained using:
6-hourly ERA-40 Reanalysis 10m winds
6-hourly SSM/I satellite 10m winds
Daily SeaWinds satellite 10m winds
Hourly buoy 10m winds
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Sea-Surface Wind Speeds: Moments
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Wind Speed pdfs: Weibull

The pdf of wind speed w has traditionally been
represented by 2-parameter Weibull distribution:

L) e (= (%)) w0

0 w <0

;

Pw(w) = <
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Wind Speed pdfs: Weibull

The pdf of wind speed w has traditionally been
represented by 2-parameter Weibull distribution:

L) e (= (%)) w0

0 w <0

;

Pw(w) = <

a 1s the scale parameter (pdf centre)

b 1s the shape parameter (pdf tilt)

pw(w) is unimodal
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Wind Speed pdfs: Weibull

Weibull pdfs for a = 8
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Wind Speed pdfs: Weibull

For a Weibull distribution, skew(w) is a decreasing
function of mean(w)/std(w)

2.5

mean(w)/std(w)

Models of theProbabilitv Distributionof Sea-Surface Wind Soeeds — n. 12/44



Wind Speed pdfs: Observed

» Observed speed moments fall around Weibull curve
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Wind Speed pdfs: Observed

Observed speed moments fall around Weibull curve
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Wind Speed pdfs: Not exactly Weibull

Observed distribution of wind speed moments
displays non-Weibull structure
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Wind Speed pdfs: Not exactly Weibull

Observed distribution of wind speed moments
displays non-Weibull structure

Degree of “non-Weibullness™ can be measured by
relative entropy:

= [t (G
where:

pw(w) = observed wind speed pdf
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Wind Speed pdfs: Not exactly Weibull

Observed distribution of wind speed moments
displays non-Weibull structure

Degree of “non-Weibullness™ can be measured by
relative entropy:

= [t (G
where:

pw(w) = observed wind speed pdf
qu(w) = best-fit Weibull pdf

@ UVic

Models of theProbabilitv Distributionof Sea-Surface Wind Soeeds — n. 15/44



Wind Speed pdfs: Relative Entropy
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Wind Speed pdfs: Empirical Models

Strategy: systematically construct wind speed pdis
from joint pdf of vector components, p,,(u, v)

puw(w) = w/ Puv(w cos B, w sin 0)do
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Wind Speed pdfs: Empirical Models

Strategy: systematically construct wind speed pdfs
from joint pdf of vector components, p,,(u, v)

pu(w) = w/ Puv(w cos B, w sin 0)do

Approach simplified by assuming u, v independent,
SO

puv(ua U) — pu(u)pv (U)
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Wind Speed pdfs: Gaussian Vector Winds

Simplest model assumes 1sotropic Gaussian
fluctuations 1n vector winds:

pu(u) = \/#QXP< (UQ_;)2>
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Wind Speed pdfs: Gaussian Vector Winds

Simplest model assumes 1sotropic Gaussian
fluctuations 1n vector winds:

pu(u) = \/ﬁexp( (UQ_U?z)

1 2
(V)
P = T O (‘272)

Integrating over wind direction:
w w? + u? 7 wu
pult) = 5P\ "5 | o\ 2
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Wind Speed pdfs: Gaussian Vector Winds
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Wind Speed pdfs: Gaussian Vector Winds

= Isotropic Gaussian model = large biases
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Wind Speed pdfs: Gaussian Vector Winds

Isotropic Gaussian model =- large biases

Relax assumption of 1sotropy:
o, = std(u), o, = std(v) =

( ) w w? + u? "
(W) = exp | —
b OO b 202

() S e (2)
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Wind Speed pdfs: Gaussian Vector Winds

Isotropic Gaussian model =- large biases

Relax assumption of 1sotropy:
o, = std(u), o, = std(v) =

w w? + u?

pu(w) = ———exp | ——55— | X
W — [w o2\ 1" D(k + 1/2) uw
{10 () 2w (-2)) e
U k—1 v U

)
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Wind Speed pdfs: Gaussian Vector Winds

Model Model-Observations
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Wind Speed pdfs: What now?

Gaussian vector winds unable to model skewness of
speed pdfs 1n tropics and Southern Ocean
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dependence of surface drag on surface winds
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Wind Speed pdfs: What now?

Gaussian vector winds unable to model skewness of
speed pdfs 1n tropics and Southern Ocean

In fact, vector winds are manifestly non-Gaussian

Along-mean-wind component characterised by
anticorrelated mean and skewness fields

Coupling of moments follows from nonlinear
dependence of surface drag on surface winds

Symmetric fluctuations in forcing
= asymimetric response, skewed toward rest

@ UVic
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Vector Wind Moments
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Vector Wind pdfs: Skewed pdfs

Need skewed pdf to model u (still assuming v 1s
Gaussian)
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Vector Wind pdfs: Skewed pdfs

Need skewed pdf to model u (still assuming v 1s
Gaussian)
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1. “Bigaussian” pdf
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Vector Wind pdfs: Skewed pdfs

Need skewed pdf to model u (still assuming v 1s
Gaussian)

Will explore different models:

1. “Bigaussian” pdf

2. Centred Gamma pdf

3. Gram-Charlier expansion of Gaussian

4. Maximum entropy pdf

Question 1s: how important are details of skewed pdf
of u for pdf of w?

@ UVic
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Bigaussian pdf

Two half-Gaussians:

o) = — exp (— oty ) U< p
V2mo? | exp 253(_1‘jr)€)2 u > [
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Bigaussian pdf

Two half-Gaussians:

(u—p)*
( ) 1 eXp 202(1_6)2 u < lu
Pull) = e 1)
V2mo? | exp 252(1@6)2 u > [
Moments:
8
mean(u) = pu+ 4/ —0¢€
T

std(u) = o [1 - (3 — %) 62] .

skew(u) = \/gstdg (u)
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Centred Gamma pdf

With 2 = (u — 1) /o

0 2+ 03<0

pu(u) = { ks [8(z + B))” T exp [~z +8)] 245> 0
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Centred Gamma pdf

With 2 = (u — 1) /o

0 2+ 03<0

pu(u) = { ks [8(z + B))” T exp [~z +8)] 245> 0

Moments:

mean(u) = u
std(u) = O
skew(u) = 2/73
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Gram-Charlier Expansion

With z = (u — )/ o:

pu(u)

1
ozl

1+ ZHg(Z) + iH4(z)

6

24 } b (_%2)
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Gram-Charlier Expansion

With z = (u — )/ o:

1+ 2 Hy(z) + %H‘l(z)} =P (_%2)

Moments:

6
mean(u) = U
std(u) = o
skew(u) = v
kurt(u) = k
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Maximum Entropy pdf

Subject to the constraints:

mean(u) = u
std(u) = o
skew(u) = v
kurt(u) = k

find the pdf p,(u) which maximises the entropy

H— - / pu(t) In po (1) du
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Maximum Entropy pdf

Solution takes the form

pu(u)

4
1 )
E exXp (; )\ZU )
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Maximum Entropy pdf

Solution takes the form

4
1 .
pu(u) = 7 exp ( E )\iuz)
i=1

Lagrange multipliers {\;} found as solutions to
unconstrained dual variational problem
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Maximum Entropy pdf

Solution takes the form

pu(u)

4
E exXp - )\ZU

Lagrange multipliers {\;} found as solutions to
unconstrained dual variational problem

Maximum entropy pdf 1s “least biased”” among all
pdfs with given moments, 1n a rigorous information

theoretic sense
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Empirical Wind Speed pdfs: Intercomparison

Skew(u) from observations, no kurt(u) information

Bigaussian Gram-Charlier

0 0.5 -0.5 0

Modelled skew(w) - observed skew(w)
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Empirical Wind Speed pdfs: Intercomparison

= Incorporating observed skew(u) information =
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Empirical Wind Speed pdfs: Intercomparison

Incorporating observed skew(u) information =-

» pdf parameterisation improves over Gaussian
model
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Empirical Wind Speed pdfs: Intercomparison

Incorporating observed skew(u) information =-

pdf parameterisation improves over Gaussian
model

Bigaussian, centred gamma better than
Gram-Charlier, maximum entropy
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Empirical Wind Speed pdfs: Intercomparison

Incorporating observed skew(u) information =

pdf parameterisation improves over Gaussian
model

Bigaussian, centred gamma better than
Gram-Charlier, maximum entropy

BUT: for Gram-Charlier & maximum entropy pdfs,
have set kurt(u) =0

@ UVic
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Empirical Wind Speed pdfs: Intercomparison

Incorporating observed skew(u) information =

pdf parameterisation improves over Gaussian
model

Bigaussian, centred gamma better than
Gram-Charlier, maximum entropy

BUT: for Gram-Charlier & maximum entropy pdfs,
have set kurt(u) =0

In fact, kurtosis of along-mean-wind component
non-trivial

@ UVic
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Skew(u) vs. Kurt(u)
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Empirical Wind Speed pdfs: Intercomparison

Skew(u) and kurt(w) from observations

Bigaussian Gram-Charlier

Modelled skew(w) - observed skew (w)
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Empirical Wind Speed pdfs: Intercomparison

Isotropic fluctuations
Bigaussian Gram-Charlier

Modelled skew(w) - observed skew (w)
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Empirical Wind Speed pdfs: Intercomparison

= Relationships between moments

Bigaussian Gram—-Charlier

skew(w)

2 3 4 5
mean(w)/std(w)
Centred Gamma

skew(w)

, R
1T UVIC mean(w)/std(w)

10.000
4.642
2.154
1.000 =
0.464
0.215
0.100
0.046
0.022
0.010

skew(w

10.000
4.642
2.154
1.000 =

0.215
0.100
0.046
0.022
0.010

skew(w

2 3 4 5

mean(w)/std(w)

Maximum Entropy

2 3 4 5

mean(w)/std(w)
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Wind Speed pdfs

Non-Gaussian structure 1n vector wind important for
accurate simulation of wind speed pdf
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Wind Speed pdfs

Non-Gaussian structure 1n vector wind important for
accurate simulation of wind speed pdf
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Wind Speed pdfs

Non-Gaussian structure 1n vector wind important for
accurate simulation of wind speed pdf

Parameterisation requires more input information:
4 moments rather than 2

Howeyver:
skew (u), kurt(u)
can be parameterised 1n terms of
mean(u), std(u)

Relationship between moments can be found
empirically or mechanistically

@ UVic
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Mechanistic Model

Mechanistic model follows from boundary-layer
dynamics
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Mechanistic Model

Mechanistic model follows from boundary-layer
dynamics

Horizontal momentum equation:

1 "u!
@+u Vu———Vp kau__é’(puug)
ot 0 p 0z
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Mechanistic Model: Assumptions

» Integrating from z = 0to z = h
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Integrating from z = 0to z = h
Neglecting advection (“single column model™)
Monin-Obukhov formulation of surface drag

Downwards mixing of momentum from above
2z = h with “finite-differenced” eddy viscosity

du 1 A Cd K
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Mechanistic Model: SDE

= Define:

I1

1 ~ K
——Vp—kau+—2U
0 h
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Mechanistic Model: SDE

Define:
h2

1 - K
II=—Vp—fkxu+ U
p

Assume fluctuations in 11;
M,(t) = (IL) + oWi(t)
II,(t) = oWa(t)
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Mechanistic Model: SDE

Define:
h2

1 - K
II=—Vp—fkxu+ U
p

Assume fluctuations in 11;
I,(t) = (1) + OWl (t)
II,(t) = oWa(t)

Finally, we obtain stochastic differential equation

du Cd K
% — <Hu> — EU}U h2u | UWl
dv C4 K G

% = —ﬁwv hzv | O'WQ
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Mechanistic Model: pdf

The stochastic differential equation has an
associated Fokker-Planck equation for the stationary
pdf, which yields the analytic solution:

K

2
Puv(u, v) = Nyexp (_2 {<Hu> U — 2_h2(u2 + v?)
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Mechanistic Model: Predictions

mean(u) (ms™) std(u) (ms™) skew(u)
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Mechanistic Model: Predictions
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Mechanistic Model: Comparison with Observations

10.000

Observed
1.2 m—— \Neibull
Model 4.642

2.154
1.000
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10.215
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| | | | | | | | | 0-010
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mean(w)/std(w)
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Mechanistic Model: Limitations

Relationships between moments predicted
qualitatively, not quantitatively
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Mechanistic Model: Limitations

Relationships between moments predicted
qualitatively, not quantitatively

“Slab model”; oversimplified treatment of BL
turbulence

Neglect of other sources of variability, e.g.:
stratification
sea state

Isotropic, independent fluctuations

Qualitative success of model suggests it has captured
essential physics: still improvements to be made

& UVic

Models of theProbabilitv Distributionof Sea-Surface Wind Soeeds — n. 43/44



Conclusions

Accurate parameterisations of wind speed pdfs can
be developed from pdis of vector wind
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Conclusions

Accurate parameterisations of wind speed pdfs can
be developed from pdis of vector wind

Non-Gaussian structure of vector winds important
for pdf of speed, especially skewness & kurtosis of
along-mean-wind component

Of all empirical models considered, maximum
entropy pdfs performed best

Mechanistic model: first step in parameterising
higher-order vector wind moments in terms of lower

Results provide parameterisation of pdf of wind
speed 1n terms of (space/time) gridscale-averaged
quantities

IC
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