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aily SST/AIRT anomalies are non-Gaussian!

Where does the non-Gaussianity comes from?
‘How does the non-Gaussianity effect SST/AIRT variability?

1. The uncoupled problem 2. The coupled problem

OWS-P - full year

S8T Anomaly

SST Anomaly




Multiplicative Noise.and. Non-Gaussian
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Daily SST anomalies are non-Gaussian: Skew t-distribution.
Where does the non-Gaussianity comes from?
How does the non-Gaussianity effect SST variability?

PDFs of daily SST anomalies at OWS P (Gulf of Alaska)

SST Anomaly SST Anomaly

Histogram Parametric fit: Skew t
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I\ie{;lecting many effects (adv_eﬂc_tion, salinity, radiation) the
heat budget equation for the SST is:

dT, (T, T.,[U])

with the heat flux f=p>T,-T,)[ U]

dt h

A Taylor expansion yields:

daT!  f 1/ of 10 of
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Modeling SSJ _Anomalies
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* Neglecting the _anomalous heat flux derlvatlve,
~ »Modeling the - as white-noise yields:

——

Frankignoul and
Hasselmann (1977)

S;
ﬁhe red-noi ctrum is consistent with observations.

Cons:
= The PDF is strictly Gaussian and not consistent
with observations.
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= Including the :
“ Modeling the and the
as white noise yields:

at;_ 1/
dt  h\oT,

dT,
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= The red-noise spectrum is consistent with observations.
= The PDF Is almost consistent with observation.
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Observations

SST Anomaly

The anomalous heat flux derivative can explain the
observed deviations (kurtosis) from Gaussianity.
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r=T/. (t+At)-T (t+At)
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Autocorrelation
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The residual is nearly uncorrelated and highly non-Gaussian
on the resolved timescale. That is, the multiplicative white-
noise approximation is justified.



Impact of Linea iplicative Noise
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Does It matter?

Ratio of Multiplicative to Additive Noise Model
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Multiplicative noise enhances low-frequency
Anomalous SST variability by about 10%-30%.
Multiplicative noise has an impact.



Nextwe study the nenlinear inverse problem:
Does nonlinear inverse modeling confirm our linear results?
Does nonlinear inverse modeling improve our results?

th° _ A(T)+B(T")7

SST Anomaly SST Anomaly
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Nonlinear multiplicative noise =~
Changes SST predictabllity (left).
Enhances low-frequency anomalous SST variability (right).

Predictability Spectra

Time of Skillful Forecast [days]
Spectral Density
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Initial Condition Period [days]




PDF anomalies of normalized daily SST anomalies
for extended winter (left) and extended summer (right).
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SST Anomaly SST Anomaly

MLM simulates the PDFs of SST anomalies well throughout
the extended winter.
MLM does a poorer job during the extended summer.



e A(T)+B(T )
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SST Anomaly

SST Anomaly

The effective drift and the structure of the noise is generally
similar to the stochastic model constructed from observations.
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Nonlinear inverse model Is consistent with

ocean model.

Net Heat Flux Anomaly The skew is induced by:

The mean air-sea
temperature difference.

The stability dependence of
the bulk transfer coefficient.
The nonlinearity of the

Clausius-Clapeyron equation.

Heat Flux

TAIR’ - SST’

The high-frequency variability of boundary layer winds and
related heat fluxes are crucial to model SST variability.
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' "\7\_/0_\;v couple the ocean to the atmosphere through the
heat flux, and add a simple radiative damping:

74 d;;a =f(T,,T,,|U|)- AT,

with the heat flux USRIV

oo =TT UD- AT,

A Taylor expansion yields:
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aTr* . . | |
— = AT+ B,,(T")7, + Bn, I8 (B, (T/-T,+1II) 0)

dt B, (T")=
'V'( ) kBZl(Ta’—TO +11) OJ
(Barsugli and Battisti with multiplicative noise) Ik <T0> — (Ta>




arameters of coupled model can be estimated
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Effective Drift AIRT-Component  SST-Component
Is indeed almost linear '
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Multiplicative Noise
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OWS-P — extended winter

SST Anomaly
S5T Anomaly
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AIRT Anomaly AIRT Anomaly

The state-dependent (multiplicative) anomalous
(stochastic) heat flux can explain the observed
deviations from Gaussianity.
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T (t+At)=-AT, (OAt+T,, (1)} —
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The residual is nearly uncorrelated and highly non-Gaussian
on the resolved timescale. That is, the multiplicative white-
noise approximation is justified.



Spectral Density
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Multiplicative noise (noise induced drift) changes spectral
response of anomalous SST/AIRT variabllity.
Multiplicative noise has an impact.
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Multiplicative noise (noise induced drift) changes spectral
response of anomalous SST/AIRT variabllity.
Multiplicative noise has an impact.
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= Simple extension of Frankignoul and Hasselmann (1977)
reproduces observed PDFs: Uncoupled and coupled.

= The high-frequency variability of boundary layer winds and
related heat fluxes are crucial to model SST variability and
local atmosphere-ocean coupling.

ﬁpled model with incorrect atm ic variability might..
' ' ' atmosphere-ocean
INg.
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