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Intfroduction to Moisture in the Atmosphere

» Saturation vapor pressure: tells how much water vapor can
exist in air before condensation occurs

Sat. vapor pressure is a function of temperature:

es = Aexp(—B/T)

(Increases rapidly with temperature)
Water vapor releases latent heat when it condenses

Typical tropical lower fropospheric moisture values: 40K of
latent energy
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Effect of Moisture on Large Scale
Dynamics

» With global warming, atmospheric moisture content will
INncrease

» What effects will the increased moisture have on the
Earth’s climate?
Poleward fluxes of energy
North-south tfemperature gradients
Intfensity of storms

Precipitation changes
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Outline

» Infro: static stability, eddy scale, energy fluxes

» Description of model: simplified moist GCM
Primitive equations
Aquaplanet mixed layer surface
Gray radiative transfer

Moisture/convection

» Resulfs
Extratropical static stability
Eddy length scales
Jet latitude

Energy fluxes
¢ Energy balance models
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Theories for Midlatitude Static Stability

where s = ¢, T 4 gz (dry static energy)
» In fropics, moist adiabat determines stabllity

» Dry baroclinic eddy flux theories for midlatfitudes:

Held 1982, Schneider 2004, baroclinic adjustment
theories (Stone, etc)

Isentrope from subtropical boundary layer goes to
fropopause at the pole

» Juckes (2000): moisture/convection is important
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Theories for Midlatitude Eddy
Scales/Energy Fluxes

» Most unstable mode of linear baroclinic instability problems

Rossby radius of deformation: Lp ~ &2

f
» lurbulent inverse cascade:

Rhines scale: Lg ~ w/'”—é'

» Energy fluxes: [v(cp,T + gz + Lq)dp

Moisture provides extra energy source to storms:
sfronger eddies?

Stronger moisture fluxes means weaker eddies to
compensate?
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Primitive equations
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» Spectral method, T170 resolution (0.7° or 80 km), 25 levels
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Model Description

» Aguaplanet slab mixed layer ocean
Ocean-covered Earth, shallow mixed layer

Sea surface temperatures adjust to conserve energy in
the tfime mean

Means atmosphere performs all the energy transports

Facilitates variation over wide parameter range
» Simplified Monin-Obukhov surface flux scheme

» K-profile boundary layer scheme

Diffusion up tfo a calculated boundary layer depth
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Radiation Scheme

Gray radiation: simplest scheme other than Newtonian
cooling. Water vapor, clouds, other fracers have no effect
on radiatfion.

All solar heating goes directly into surface
Parameters: longwave optical depths, shortwave heating

LW optical depth SW heating of surface

Pressure

50 0 50
Latitude Latitude

» Strongly unstable radiative equilibrium profile
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Moisture/Convection

» Analytic Clausius-Clapeyron relation:

_ L —1 —1
€s = €50 EXTP _R— T =1,
\%

» €50 IS key parameter which we vary
Control: eso = 610.78 Pa
Dry limit: eso = 0
Up to: eso = 6107.8 Pa (10 fimes moisture)
» Simplest convection scheme: no convection scheme!
(large scale condensation only)
Revaporate precipitation info unsaturated areas

Similar in practice to moist convective adjustment
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Climatologies

» Control case and dry limit «w and T

Zonal wind, control case Zonal wind, dry limit

Temperature, dry limit
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Climatologies

» INstantaneous precip

» Conftrol case dry stafic energy

DSE, control case

Pressure

50
Latitude
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Static stability

» Dry static energy for dry limit, control, and 10X moisture
case:

DSE, dry limit DSE, control case DSE, 10X moisture
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» Isentropic slope clearly changes with moisture content

» [ropopause height additionally increases with moisture (as
in radiative constraint of Held (1982))
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Moist static stability

» Dry limit DSE, and saturated MSE for control case and 10X
case (indication of moist stability):

DSE, dry limit Sat MSE, control case Sat MSE, 10X case
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» Theory of Juckes (2000): moist convection is key

Moist convection always occurs in warm areas of
aroclinic eddies

Moist stability is set by surface variance of moist static
energy
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Dry limit static stability

» Dry limit: only convection is boundary layer (BL) scheme

» Instantfaneous BL depth and PDF of BL depth

Instantaneous PBL depth (km)

Latitude

150 200
PDF of PBL depth

Pressure

0 20
Latitude
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Stability with moisture

» Clearly dry stability increases significantly as moisture
content increases: what about moist stability?

Saturated MSE - surface MSE:

Dry limit Control 10X moisture

Latitude

» Moist stability increases as well, due to increased variance
of surface MSE. What’s the effect on length scales?
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Length scales

» Left: Spectrum for & [ |v|dp at 45 degrees

» Right: Mean length scale I = 272¢03(0) \yith | = L kER)dk

k [E(k)dk

Spectrum at 45 Length scale
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Green = control, Red = dry limit, Blue = 10X moisture
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Length scales

» Clearly dry Rossby radius is not appropriate! Not moist
Rossby radius either

» Rhines scale has too much change as well (in the ofther
direction).

» Rhines af latitude of maximum EKE works very well: allows 5
tfo change

Vertical mean EKE

0
Latitude
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Moist Static Energy Fluxes

Moist static energy fluxes
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Moist Static Energy Fluxes

» MSE, DSE, and moisture fluxes:

Moist static energy fluxes Dry static energy fluxes Moisture fluxes
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Green = control, Red = dry limit, Blue = 10X moisture

» INncrease of moisture fluxes compensated nearly perfectly
by decrease of DSE flux. "Compensation” = 99% for dry to
conftrol, and 93% for dry to 10X
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Interpreting the MSE fluxes

» Stone (1978) gives reason for shape of profile not varying
much:

Flat OLR implies profile that’s nearly identical to this

Same as in observations (Trenberth and Stepaniak
2003)

Flux from flat OLR = 7.8 PW (much larger than here)

» Energy balance model.

om

e = Qsw — Qrw + DV?*m

Diffusing surface moist static energy m

Radiation forcing (Q sw = shorfwave heating,
QrLw = oTg =longwave cooling)

Only energy flux is diffusive, with some diffusivity D
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EBM with exact compensation

» The following assumptions give exact compensation:
Fixed diffusivity
Fixed level of emission zg
All water condensed out by emission level (¢(zg) = 0)

Neutral stability fo emission level (m(zg) = m)

» EqQuation becomes:

om

(—T=E)

4 1 DV%m

Qsw — o
Cp

Equation is only a function of m

Independent of partition into dry and moist
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Refinements to EBM

» Actually calculating moist adiabats gives less perfect
compensation (especially on moist side)

MSE flux, EBM with constant diffusivity
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» Some change in diffusivity is necessary
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Diffusivity

» GCM diffusivity (average flux divided by surface gradient):

GCM diffusivities
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» Mean extratropical diffusivities: 1.9 x 105m2s—1 (control),
2.1 x 10m2s~1 (dry), 1.3 x 109m2s—1 (10X)

» EBM with the mean diffusivities albbove gives correct
compensation
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Theory for diffusivity

Mixing length theory:

v'm/

with k = correlation coefficient, |v’| = rms velocity, and L =
mixing length

Diffusivity proporfional to velocity scale times length scale
(D =k |v'| L)

Length scale as before: Rhines scale at latitude of
maximum EKE

All that remains for full EBM is theory for jet latitude and
velocity scale
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Jet Latitude

» Jeft lafifude: poleward shift robustly seen in global warming
forecasts (Yin 2005)

Vertical mean EKE

Latitude

Theory for jet latitude: latitude of maximum
midfropospheric temperature gradient

Determined purely thermodynamically in our model (moist
adiabats from surface)

Shift is present in EBM with exact compensation
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Theory for Velocity Scale

» v from equipartition of EKE and mean available potential

. 1 0T

» Not dependent on stafic stability or moisture content

» Full EBM with all these converges, and predicts
qualitatively:

Poleward shift of eddies with increased moisture
Reduction of diffusivity

Near-equality of fluxes
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Conclusions

» Static Stability
Dry static stability is dominafted by moist adiabat

Moist cases are more stable in terms of moist stability
(and much more stable in ferms of dry stability)

» Eddy scales
Varies little with moisture (not standard Rossby radius)

Rhines scale at latitude of maximum EKE works well

» Energy fluxes
High degree of compensation of moisture fluxes by dry
static energy fluxes
Seen in simple EBM’s with fixed diffusivity

Diffusivity reduction with moisture aids compensation




