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e Properties of smoothers
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Estimating a curve or surface.

An additive statistical model:

Given n pairs of observations (z;,y;), i=1,...,n
yi = g(z;) + €

€;'S are random errors
and g is an unknown, smooth function.

T he goal is to estimate g based
on the observations



A two dimensional example

Predict surface ozone where it is not moni-
tored.
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Penalized least squares

Ridge regression
Start with your favorite n basis functions {b;}}_; The estimate

has the form

g(z) = é:l Brb(x)

where 3 = (B81,...,0n) are the coefficients.

Let Xi,k = bk(xz) SO g — XB



Penalized least squares.

minimize over (3:

Sum of squares(3) + penalty on 3
o 2 7
min > (g — [X0];)° d=n@slig
B i=1
with A > 0 a hyperparameter and H a nonnegative definite
matrix.



In general

- log likelihood (y,8) + penalty (B)

minimizing this makes sense as an estimate.

Spatial statistics estimates:

the basis ({b.}) and the penalty (H)
based on a spatial covariance.

Bayesian posterior mode:
T he penalty can also be a log prior density for (3

Once we have the parameter estimates these can be used to
evaluate g at any point.



Solution to the Ridge Regression

Just calculus ...

e Take derivatives of the penalized likelihood w/r to 3,
e Sset equal to zero,
e solve for 3

T he monster ...

A=(x st 28) X'y



T he hat matrix for prediction

g =X i e b ey Ay

T here is a transformation , G so that

AN = X(XT'X + 2B X' = (X&)(1 4+ 2D) Y(xa)t

( D is diagonal and XG orthogonal)



Linear smoothers

The vector of predictions:

g(z1)
9(5.32) (1)

Q)
[

g(xn)
T he smoother matrix: g = Ay

e A is an n x n matrix

e cigenvalues of A are in the range [0,1].

e g(z) in between the data found by interpolating the
predictions at the observations.

o [|Ayl <yl

For ridge regression (I + AD)~! is the smoothing function.



Effective degrees of freedom

For linear regression trace of XX (X1 X)~1Xx7T gives the number
of parameters. (Because it is a projection matrix)

By analogy, trA()\) is measure of the effective degrees of free-
dom attributed to the smooth surface

e trA()\) monotonically increases as A\ decreases
e trA(0O) = number of basis functions
e trA(oco) = number of basis functions not penalized.

o cffective degrees of freedom is a better parametrization than
the smoothing parameter.



T he classic cubic smoothing spline

Splines are the solutions to variational problems.

For curve smoothing in one dimension,

min 3 (g — f(0))? + 2 (" (2))?da

The second derivative measures the roughness of the fitted
curve.



Form of the solution

g Is continuous and with continuous first and second

derivatives

It is a piecewise, cubic polynomial in between the ob-

servation points.

What does this have to do with ridge regression?



Climate for Colorado

Elevations Spring average daily max temperatures
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Max/Min spring temperatures
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Cubic splines with different )\ s
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Form of the spline estimate

Estimate =

low dimensional parametric model + general function

Penalty matrix " hard-wired” to basis functions.

Divide the basis functions into two parts {¢;} and {v{y}

and only penalize the second set.

Yy = 'i1 O t)d i) o

]:



Form (continued)

Rt S e
=71 k=1

]:

Q2 derived from {v;}



INn matrix format:

|
=

T g = ¢j(z;), Ki; =¢p(z;) and ... Q

Find the parameters by the ridge regression:

min(y — Td — Ke)! (y — Td — Ke) + Ael Ke

c.d
d= (TTM1T)=Y 7T M1y (GLS)
M=K+ Al

(KKT 4+ AK) " 1(y —Td) = (K + XI)"1(y — Td)

c



T he cubic smoothing spline

We just need to define the right basis functions and penalty.

A strange covariance:

2 3
Cilwe v 2= u /6 Mo u< W
A { v2u/2 —v3/6 for u>w



Friends and strangers

Friends: ¢1(z) =1 , ¢o(x) =z ,
Strangers: ¥;(x) = k(x, x;)

The penalty matrix: $2; ; = k(=z;,x;) ,



wWhy does this work?

T he ridge regression penalty is the same as the integral criterion.
Splines are described by special covariance functions known as
reproducing kernels , k(z,z’) with ,(z) = k(x,z;) the choice for

cubic splines has the property

[ wi@); (z)dw = pi(2;) = k(zs,z))

SO when
i) = 2.4 chj and T1e = 0.

f (h' (2))2ds = iy 5 (2)e;)?de = c'Ke
J



A 2-d thin plate smoothing spline
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Collection of second partials is invariant to a rotation.

Agdain, separate off the linear part of f.

F(z) = 51+ Boxy + F3x> + H(x)

Thin plate spline kernel:

k(z, &) = [l& = 2/||Plog(||z — 2'|])

linear terms



Estimates for the ozone data

200

150

100

50




Choosing )\ by Cross-validation

Sequentially leave each observation out and predict it using the
rest of the data. Find the X\ that gives the best out of sample
predictions.

Refitting the spline when each data point is omitted, and for a
grid of A\ values is computationally demanding.

Fortunately there is a shortcut ...



T he magic formula

residual for g(x;) having omitted y;

(=g = W )b AN

This has a simple form because adding a data pair (x;,g_1) to
the data does not change the estimate.



CV and Generalized CV criterion

CV(X)

- - 5 . (yz gz)2
(1/ )Z(yz s e mrs ey

GOV ())

S (yi — G1)?
(1 —trA(\)/n)?

(1/n)

Minimize CV or GCV over \ to determine a
good value



GCV for the ozone data

GCV/( eff. degrees of freedom), the estimated surface

GCV-points , solid- GCV model,
dashed- GCV one
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GCV for the climate data

GCV( eff. degrees of freedom), the estimated curves
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Summary

We have formulated the curve/surface fitting
problem as penalized least squares.

Splines treat estimating the entire curve but
also have a finite basis related to a covariance
function (reproducing kernel).

One can use CV or GCV to find the smooth-
Ing parameter.



T hank you!




