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Langmuir Circulation (LC) Windrows

—A. Szeri (1996) —G. Marmorino  —McWilliams etal. (1997)



Related Work — Theory and Simulation

Quasi-Laminar Simulations of 2D Craik—Leibovich (CL) Equations
e Li & Garrett (J. Mar. Res. 1993, JPO 1995,1997)

e Gnanadesikan & Weller (JPO 1995)

Weakly Nonlinear 2D and 3D Investigations
e 2D: Leibovich, Lele & Moroz (JFM 1989)

e 3D: Bhaskaran & Leibovich (Phys. Fluids, 2002)

Small Wavenumber Finite-Amplitude 3D Investigations
e Cox & Leibovich (Phys. Fluids, 1997)

Simulations of Full 3D Craik—Leibovich (CL) Equations
e DNS: Tandon & Leibovich (JGR, 1995)

e LES: Skyllingstad & Denbo (JGR, 1995), McWilliams et al. (JFM, 1997),
Tejada-Martinez & Grosch (JFM, 2007)



Goals and Motivation

Objective Obtain reduced PDE model capable of describing coarse-grained,
strongly anisotropic but otherwise turbulent LC dynamics.

Motivation
e Secondary stability analysis by Tandon & Leibovich (JPO, 1995)

e Reduced PDEs for rapidly-rotating thermal convection by Julien, Knobloch
& Werne (Theoret. Comput. Fluid Dyn., 1998), Sprague et al. (JFM, 2006)

Purpose

e Reveal dominant 3D physics.
e Enable simpler (e.g. upper-bound) analysis.
e Less expensive numerical simulations for multi-scale process studies.

e Incorporation into formal multiscale numerical scheme.



|Isotropically Scaled CL Equations

e Consider full 3D, isotropically-scaled CL equations, where two parameters
Ry = usxH /ve, Lay = (/ux/us, replace single parameter La = LatR;?’/Q:

Du 1 1 2
— = —-Vp+ —(Us Xxw) +—V=u
Dt Pt pUs @)+ g

e Two turbulence regimes:

Shear flow turbulence regime: La; > 1 with Ry« > 1.
Langmuir turbulence regime: La; = 0O(0.1) with La < 1.

e Motivates consideration of formal limit La; — O with R, fixed or R« — oo:

2D dynamics: Q2#0, 0,92=0, u—fluctuations < (v, w)—fluctuations.




Anisotropic Velocity Scalings

e Employ anisotropic velocity scales to capture nonlinear, spatially anisotropic
reduced dynamics:

U=usRe, (VW)= Uus,, P = pV?

e In essence, perturbing off of strictly 2D [0(-)/dx = O] problem.

e Ildentifye =U/W = Ri/QLat (cf. Tejada-Martinez & Grosch 2007).



Rescaled CL Equations in Strong Wave—Forcing Limit

Opu+eubpu+ (V| -V | u —e 10, P+eR? |07 + V| u

Ov| +eudev  + (v -V )v = —VLP—FUS(VLu—e_laxVL)
+ eR;? [8323-|-Vﬂ v

€ag3u+VJ_-VJ_ = 0

e Wind stressBC: 0,u = 1alongz=0, —1.

e z-invariance at leading-order: 9, P = 0;v = d,w = 0and V| - v = Q.



Multiple Scale Expansion

. Limit process: ¢ — 0, i.e. La; — 0, Rx« = La; "™, 0 < a < 1/2.
. Introduce slow z scale: X = ex sothat 9, — 9, +¢c0x.

. Expand fields:

’U,(CE,y,Z,t) — UO(CE,X,y,Z,t)—|—€’U,]_(CE,X,y,Z,t)—|—
VJ_(CE,y,Z,t) — VOJ_(X,y,Z,t)+€V]_J_(CE,X,’y,Z,t)-I—
P(x,y,2,t) = Po(X,y,2,t)+eP1(z, X,y,2,t)+ ...

. Substitute into PDESs, collect terms of like order and average over fast z.

. Obtain closed set of equations forug = U(X, y, z,t),vg =V | (X, vy, 2, 1)
and Po = N(X, vy, z,1).



Reduced PDEs

e Define:
D) = a()+(VL -V () = ()+I[(), 4],

where J[(), ] = 9200, (-) — Byhd: ().

e Reduced dynamics governed by:

DU = —9xN+LaViU

DiQ+Us(2)0xQ = Ul(2)(0xV — 8yU)+LaV2 <
VIN = 2J[0y, 0:41+V | - (Us(2)V LU)+UL(2)0x (9y1))
Vayp = —Q, V, =V, x4t

e Fast x averaged BCsalongz=0,—-1: 0, U =1, ©2=0, ¥ =0.

e Advection by U and stretching of €2 are subdominant processes.



Strongly Nonlinear, Strictly 2D Convective States
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e Steady-state U (y, z) profiles show excellent qualitative agreement with
x—t averaged LES profiles of Tejada—Martinez & Grosch (2007).



Matched Asymptotic Analysis

Pseudo-Spectral Simulations: Core Vorticity for k =12, 1, 21
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e Asymptotic analysis predicts core vorticity |2| ~ 1 V k as La — O.

e With ¥ (y, z) known, boundary/interior layer problems linearize and entire
solution can be approximated asymptotically.

T G. P. Chini. Strongly nonlinear Langmuir circulation and Rayleigh—Bénard convection.
Submitted to the Journal of Fluid Mechanics.



Reduced PDEs — Linear and Secondary Stability Results
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T G. Chini, K. Julien, E. Knobloch. An asymptotically reduced model of Langmuir turbulence.
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Conclusions

e Derived reduced PDEs for anisotropic Langmuir turbulence in strong wave-
forcing limit that capture dominant linear and secondary instabilities.

e Ongoing investigations:

time-dependent simulations of reduced system.

Incorporation of stratification (interactions b/w LC and internal waves)
and rotation.

exploration of scalings yielding complementary reduced PDE models
of Langmuir turbulence.

application of methodology to other shear-flow instability phenomena.

T GPC gratefully acknowledges support from NSF CAREER award 0348981 (administered by
the Physical Oceanography Program).



Future Directions — Submesoscale—Mesoscale Interactions

e Investigate multiscale interactions b/w mixed-layer LC and submeso- and
mesoscale eddies.

e Develop modulation (or homogenization) theory for asymptotic strongly-
nonlinear 2D LC solutions.

e Construction of a hierarchy (algebraic, ODE, reduced PDE) of LC vertical-
flux parameterizations for use in OGCMs.



