Bayesian Modeling and Computation in Complex Geophysical Problems

Mark Berliner Ohio State University

NCAR Workshop: Petascale Computing 5-7 May, 2008

Outline

- Bayesian Modeling: Selected Features
- Computation: Monte Carlo (MC)
 - 1. Basic MC
 - 2. Importance Sampling, Particle Filters
 - 3. Markov Chain MC
- Examples of Multiscale Models
- Discussion

Bayesian Modeling: Selected Features

- Bayesian Analysis: treating uncertainty and knowledge
 - Combine observations & other information sources formally
 - Uncertainty management is paramount
 - Inputs and outputs are probability distributions
- Mechanism: probability theory
- Challenges: (I) formulation of models; (II) computation.
- Two general arenas
 - 1. Stochastic Dynamic Modeling: developing probability models for a complex system (within & across space-time scales; coarse graining; stochastic parameters & parameterizations)
 - 2. <u>Forecasting</u>: learning about and predicting an unobserved trajectory of a dynamical system (NWP; data assimilation)

Modeling device: Bayesian Hierarchical Models (BHM)

• HM: Sequences of conditional probability models

$$\mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{p}(\mathbf{x} \mid \mathbf{y}, \mathbf{z}) \mathbf{p}(\mathbf{y} \mid \mathbf{z}) \mathbf{p}(\mathbf{z})$$

• Skeleton BHM, Observations y; Processes x; Parameters θ

- 1. Data Model $q(y|x, \theta)$
- 2. Prior Process Model $p(x | \theta)$
- 3. Prior Parameter Model $p(\theta)$
- Bayes' Theorem gives <u>Posterior Distribution</u>:

$$\begin{aligned} \mathbf{p}(\mathbf{x}, \boldsymbol{\theta} \,|\, \mathbf{y}) &\propto & \mathbf{q}(\mathbf{y} \,|\, \mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\mathbf{x} \,|\, \boldsymbol{\theta}) \mathbf{p}(\boldsymbol{\theta}) \\ &= & \mathbf{q}(\mathbf{y} \,|\, \mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\mathbf{x} \,|\, \boldsymbol{\theta}) \mathbf{p}(\boldsymbol{\theta}) / \mathbf{q}(\mathbf{y}) \end{aligned}$$
where
$$\mathbf{q}(\mathbf{y}) = \int \mathbf{q}(\mathbf{y} \,|\, \mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\mathbf{x} \,|\, \boldsymbol{\theta}) \mathbf{p}(\boldsymbol{\theta}) d\mathbf{x} d\boldsymbol{\theta}$$

NCAR Workshop: Petascale Computing 5-7 May, 2008

What Does This Buy Us?

- Combining information: "Physical-statistical modeling" (Berliner, JGR, 2003)
- Quantifying and dealing with uncertainty!!
- SGS parameterization? (ECMWF & "stoch-physics")
- A. Operational impact of chaos: treat things as random.
- B. From a deterministic physical model, $\mathcal{D}(\mathbf{x}, \boldsymbol{\theta}_{\mathbf{m}}) = \mathbf{0}$ to a stochastic model $\mathbf{p}(\mathbf{X} \mid \boldsymbol{\theta})$
 - "Approximate physics (\mathcal{D}) applied approximately (discretize \mathcal{D}) and unsurely $(\theta; \text{ forcings unknown})$ "
 - (Berliner, Milliff, Wikle, 2003, JGR) Air-sea interaction:

$$(
abla^2 - rac{1}{\mathbf{r}^2})rac{\partial oldsymbol{\psi}}{\partial \mathbf{t}} = -\mathbf{J}(oldsymbol{\psi},
abla^2 oldsymbol{\psi}) - oldsymbol{eta}rac{\partial oldsymbol{\psi}}{\partial \mathbf{x}} + rac{1}{oldsymbol{
ho}\mathbf{H}} \mathbf{curl}_{\mathbf{z}} oldsymbol{ au}(\mathbf{W}) - oldsymbol{\gamma}
abla^2 oldsymbol{\psi} + \mathbf{a}_{\mathbf{h}}
abla^4 oldsymbol{\psi}.$$

I see $p(\psi_{t+1}|\psi_t, \theta, winds, boundary & initial con.)$

C. Parameterization: Physical variables $X, Z = (Z_r, Z_u)$

- Discrete Time Physical Model:
- $-\mathbf{X}_{t+1} = \mathbf{h}(\mathbf{X}_t, \mathbf{Z}_{t+1})$
- $-\mathbf{Z}_{t+1} = \mathbf{g}(\mathbf{X}_t, \mathbf{Z}_t)$
- Numerical, parameterized model
- $-\mathbf{x}_{t+1} = \mathbf{\tilde{h}}(\mathbf{x}_t, \mathbf{z}_{r,t+1}, \mathbf{z}_{u,t+1}) \text{ and } \mathbf{z}_{u,t+1} \approx \mathbf{F}(\mathbf{x}_t, \mathbf{z}_{r,t+1}, \boldsymbol{\theta}) \text{ give }$ $-\mathbf{x}_{t+1} = \mathbf{G}(\mathbf{x}_t, \mathbf{z}_{r:t+1}, \mathbf{F}(\mathbf{x}_t, \mathbf{z}_{r:t+1}, \boldsymbol{\theta}))$
- 1. Stochastic-Bayesian Parameterization
- $\mathbf{p}(\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{z}_{r,t+1}, \boldsymbol{\theta}) = \int \mathbf{p}(\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{z}_{u,t+1}, \mathbf{z}_{r,t+1}, \boldsymbol{\theta}) \mathbf{p}(\mathbf{z}_{u,t+1} \mid \mathbf{x}_t, \mathbf{z}_{r,t+1}, \boldsymbol{\theta}) d\mathbf{z}_{u,t+1}$
- 2. On-the-fly Stochastic-Bayesian Parameterization

$$\begin{aligned} \mathbf{p}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{z}_{\mathbf{r}, t+1}, \boldsymbol{\theta}, \mathbf{Y}) &= \int \mathbf{p}(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{z}_{\mathbf{u}, t+1}, \mathbf{z}_{\mathbf{r}, t+1}, \boldsymbol{\theta}, \mathbf{Y}) \\ \mathbf{p}(\mathbf{z}_{\mathbf{u}, t+1} \mid \mathbf{x}_{t}, \mathbf{z}_{\mathbf{r}, t+1}, \boldsymbol{\theta}, \mathbf{Y}) \mathbf{dz}_{\mathbf{u}, t+1} \end{aligned}$$

• Both Bayesian parameterizations are built using observations, model explorations, etc.

Bayesian Computation and Monte Carlo

• Bayes' Theorem gives <u>Posterior Distribution</u>:

$$\begin{aligned} \mathbf{p}(\mathbf{x}, \boldsymbol{\theta} \,|\, \mathbf{y}) &= \mathbf{q}(\mathbf{y} \,|\, \mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\mathbf{x} \,|\, \boldsymbol{\theta}) \mathbf{p}(\boldsymbol{\theta}) / \mathbf{q}(\mathbf{y}) \\ \text{where} \quad \mathbf{q}(\mathbf{y}) &= \int \mathbf{q}(\mathbf{y} \,|\, \mathbf{x}, \boldsymbol{\theta}) \mathbf{p}(\mathbf{x} \,|\, \boldsymbol{\theta}) \mathbf{p}(\boldsymbol{\theta}) d\mathbf{x} d\boldsymbol{\theta} \end{aligned}$$

• If q(y) is intractable, turn to Monte Carlo.

1. Monte Carlo (MC)

- Sample or ensemble $x^1, ..., x^M$ from p(x | y) (Suppress θ)
- ullet Estimate expectations: (notation: E() same as <>)

$$\mathbf{E}(\mathbf{h}(\mathbf{X}) \mid \mathbf{y}) = \int \mathbf{h}(\mathbf{x}) \mathbf{p}(\mathbf{x} \mid \mathbf{y}) d\mathbf{x} \quad \mathbf{by} \quad \hat{\mathbf{E}}(\mathbf{h} \mid \mathbf{y}) = \frac{1}{\mathbf{M}} \sum \mathbf{h}(\mathbf{x}^i)$$

• That is, approximate $p(x \mid y)$ by discrete, uniform distribution on the sample: $\widehat{Pr}(X = x^i) = 1/M$

2. Importance Sampling (ISMC)

- ullet Direct sampling from $p(x \mid y)$ very hard or not possible
- Sample x^1, \ldots, x^M from g
- Estimate

$$\mathbf{E}(\mathbf{h}(\mathbf{X}) \mid \mathbf{y}) = \int \mathbf{h}(\mathbf{x}) \frac{\mathbf{p}(\mathbf{x} \mid \mathbf{y})}{\mathbf{g}(\mathbf{x})} \mathbf{g}(\mathbf{x}) d\mathbf{x} \quad \mathbf{b} \mathbf{y} \quad \frac{1}{\mathbf{M}} \sum \mathbf{h}(\mathbf{x}^i) \frac{\mathbf{p}(\mathbf{x}^i \mid \mathbf{y})}{\mathbf{g}(\mathbf{x}^i)}$$

- Usual alternative:
 - Define normalized ISMC weights $\alpha_i = w(x^i) / \Sigma w(x^j)$ where $w(x^i) = p(x^i \mid y)/g(x^i)$
 - Estimation: $\hat{\mathbf{E}}(\mathbf{h} \mid \mathbf{y}) = \sum \alpha_i \mathbf{h}(\mathbf{x}^i)$
 - Approximate $p(x \mid y)$ by discrete distribution $\{x^i, \alpha_i : i = 1, ..., M\}$: $\widehat{Pr}(X = x^i) = \alpha_i$
 - Key: the normalizer q(y) of p(x | y) cancels in the α 's so we only need p(x | y) up to proportionality.

Notes on ISMC

- Particle Filter: Evolve or generate x_t^i over time.
 - $\mathbf{Sample} \ \{\mathbf{x_{t-1}^i}, \boldsymbol{\alpha_{i,t-1}} : i = 1, \dots, \mathbf{M}\} \ \mathbf{representing} \ \mathbf{p}(\mathbf{x_{t-1}} \mid \mathbf{y_{t-1}})$
 - $\begin{aligned} &-\text{ Generate } \mathbf{x}_t^i \sim \mathbf{p}(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i) \\ &\{\mathbf{x}_t^i, \boldsymbol{\alpha}_{i,t-1} : i=1,\dots,M\} \text{ represents } \mathbf{p}(\mathbf{x}_t \mid \mathbf{y}_{t-1}) \\ &\text{ (Forecast Step)} \end{aligned}$
 - Bayes' Theorem converts to $\{\mathbf{x_t^i}, \boldsymbol{\alpha_{i,t}}: i=1,\dots,m\}$ representing $\mathbf{p}(\mathbf{x_t} \mid \mathbf{y_t})$ where

$$oldsymbol{lpha_{i,t}} \propto \mathrm{q}(\mathrm{y_t} \mid \mathrm{x_t^i}) oldsymbol{lpha_{i,t-1}}$$

(Analysis Step)

- What we can do with an ensemble depends on how it was made.
- In high dimensions α 's are poorly behaved: They concentrate on a few (or one!) ensemble members

3. Markov Chain Monte Carlo (MCMC)

- Finding normalizer q(y) vrs finding "partition function" in Statistical Mechanics
- MCMC: Develop a stationary (ergodic) Markov chain with limiting distribution coinciding with the target posterior p(x | y).
 - After a "burn-in" (like "spin-up") period, realizations from the chain form an ensemble from p(x | y) (approximately).
 - Ensemble members are dependent, but MC estimation works

Metropolis-Hastings

- State of chain at iterate i : xⁱ
 - generate $\tilde{\mathbf{x}}$ from some proposal distribution $\mathbf{g}(\tilde{\mathbf{x}} \mid \mathbf{x}^i)$
 - generate independent U = Uniform(0,1) RV
 - $-\operatorname{set} x^{i+1} = \tilde{x} \text{ if }$

$$\mathbf{U} < rac{\mathbf{p}(\mathbf{ ilde{x}} \mid \mathbf{y})}{\mathbf{p}(\mathbf{x^i} \mid \mathbf{y})} rac{\mathbf{g}(\mathbf{x^i} \mid \mathbf{ ilde{x}})}{\mathbf{g}(\mathbf{ ilde{x}} \mid \mathbf{x^i})}$$

- $-\operatorname{set} x^{i+1} = x^i$, otherwise.
- Key: Again, normalizer q(y) cancels.

Gibbs Sampler

- x is a K-dimensional vector, (x_1, \ldots, x_K)
- \bullet Derive "full conditionals" $p(x_k \mid x_1, \ldots, x_{k-1}, \;, x_{k+1}, \ldots, x_K \text{ (and } y))$
 - state of chain at iterate i: $(\mathbf{x_1^i}, \dots, \mathbf{x_K^i})$
 - $\ \mathbf{generate} \ \mathbf{x}_1^{i+1} \ \mathbf{from} \ \mathbf{p}(\mathbf{x}_1 \mid \mathbf{x}_2^i, \mathbf{x}_3^i, \dots, \mathbf{x}_K^i)$
 - $\ generate \ x_2^{i+1} \ from \ p(x_2 \mid x_1^{i+1}, x_3^i, \ldots, x_K^i)$

:

- generate $\mathbf{x}_{\mathbf{K}}^{i+1}$ from $\mathbf{p}(\mathbf{x}_{\mathbf{K}} \mid \mathbf{x}_{1}^{i+1}, \dots, \mathbf{x}_{\mathbf{K}-1}^{i+1})$

Others

- Metropolis-within-Gibbs: replace intractable full conditionals by Metropolis steps.
- Using stochastic differential equation

$$d\mathbf{u}(\mathbf{t}) = \mathbf{b}(\mathbf{u})d\mathbf{t} + \boldsymbol{\sigma}(\mathbf{u})d\mathbf{W}(\mathbf{t})$$

where $\{\mathbf{W}(\mathbf{t}): \mathbf{t} \geq \mathbf{0}\}$

- (Theory & assumptions) U(t) has a density function p(u,t)
- $-\mathbf{p}(\mathbf{u}, \mathbf{t})$ is solution Fokker-Planck Equation
- Stationary solutions:

$$\mathbf{0.50} \frac{\partial^2}{\partial \mathbf{u^2}} (\boldsymbol{\sigma^2} \, \mathbf{p}) = \frac{\partial}{\partial \mathbf{u}} (\mathbf{b} \, \mathbf{p})$$

- Pick b and σ so that p is the target posterior
- ISMC-MCMC

Key Points

- Monitoring convergence
- Output Analysis: Using output to summarize the target posterior.
- Tensions:
 - Multiple runs vrs one long run
 Wasted burnin periods vrs "mixing"
 - Output from a run are dependent

$$\mathbf{Var}(\mathbf{ar{x^i}}) = rac{\mathbf{v^2}}{\mathbf{M}}(\mathbf{1} + \sum \mathbf{c(i)}oldsymbol{
ho_i})$$

• Embarassingly Parallel? Obvious: Multiple runs, but?

Two Notions of Multiscale Modeling

1. Space-Time Filtering

- $\bullet \text{ "Hierarchical" process prior: } p(\vec{X}_c \mid \vec{X}_m) \, p(\vec{X}_m \mid \vec{X}_f) \, p(\vec{X}_f) \\$
- Up-down scaling: $p(\vec{X}_c, \vec{X}_f \mid \vec{X}_m) p(\vec{X}_m)$
- Terra incognita: $p(\vec{X}_m \mid \vec{X}_f, \vec{X}_c) p(\vec{X}_f \vec{X}_c)$

Example

- Data Model: $q(\vec{Y}_c \mid \vec{X}_c) q(\vec{Y}_m^1 \mid \vec{X}_m^1) q(\vec{Y}_m^2 \mid \vec{X}_m^2)$
- Process Prior: $\mathbf{p}(\vec{\mathbf{X}}_{c} \mid \vec{\mathbf{X}}_{m}^{1}, \vec{\mathbf{X}}_{m}^{2}) \, \mathbf{p}(\vec{\mathbf{X}}_{m}^{2}) \mid \vec{\mathbf{X}}_{m}^{1}) \, \mathbf{p}(\vec{\mathbf{X}}_{m}^{1})$

Full Conditionals for Gibbs Sampler:

- $\bullet \ F(\vec{X}_c \mid rest \) \propto q(\vec{Y}_c \mid \vec{X}_c) \, p(\vec{X}_c \mid \vec{X}_m^1, \vec{X}_m^2)$
- $\bullet \ F(\vec{X}_m^2 \mid rest \) \propto q(\vec{Y}_m^2 \mid \vec{X}_m^2) \, p(\vec{X}_c \mid \vec{X}_m^1, \vec{X}_m^2) \, p(\vec{X}_m^2 \mid \vec{X}_m^1) \\$
- $\bullet \ F(\vec{X}_m^1 \mid rest \) \propto q(\vec{Y}_m^1 \mid \vec{X}_m^1) \, p(\vec{X}_c \mid \vec{X}_m^1, \vec{X}_m^2) \, p(\vec{X}_m^2 \mid \vec{X}_m^1) \, p(\vec{X}_m^1) \\$
- Note how all levels intertwine: challenge to parallel code

Example Cont'd: Potentials for parallel codes

- (1) Run bottom nodes holding \vec{X}_c fixed (i.e., we don't have to update every variable every time, though not doing so may slow convergence/)
 - Master swaps across scales occasionally.
 - Many scales: Management system

Example Cont'd: Potentials for parallel codes

- (2) Partial Conditionals for Gibbs Sampler with ISMC:
 - $\bullet \ F(\vec{X}_c \mid rest \) \propto q(\vec{Y}_c \mid \vec{X}_c) \, p(\vec{X}_c \mid \vec{X}_m^1, \vec{X}_m^2)$
 - $\bullet \ F_p(\vec{X}_m^2 \mid rest \) \propto q(\vec{Y}_m^2 \mid \vec{X}_m^2) \, p(\vec{X}_m^2 \mid \vec{X}_m^1) \quad \{ p(\vec{X}_c \mid \vec{X}_m^1, \vec{X}_m^2) \}$
 - $\bullet \ F_p(\vec{X}_m^1 \mid rest \) \propto q(\vec{Y}_m^1 \mid \vec{X}_m^1) \ p(\vec{X}_m^1) \ \ \{p(\vec{X}_c \mid \vec{X}_m^1, \vec{X}_m^2) \ p(\vec{X}_m^2 \mid \vec{X}_m^1)\}$
 - Ignoring terms in brackets if results are simple
 - But, those terms form required IS weights
 - Speed versus memory

2. Parameterization of Scales

- Build or "parameterize" scales into dynamic model for X Example (Berliner & Kim, 2008, J Clim)
- X: monthly surface temperatures
- Time series models (AR) with time varying parameters

$$\mathbf{X_t} = \boldsymbol{\mu_{i(t)}} + \boldsymbol{eta_{j(t)}}(\mathbf{X_{t-1}} - \boldsymbol{\mu_{i(t-1)}}) + \mathbf{e_{(t)}}$$

- $\mu_{i(t)}$ slowly vary (climate scale); $\beta_{j(t)}$ vary moderately (another climate scale); e_t vary quickly ("weather"), but their variances slowly vary (climate scale):
 - $-\mu_{\rm i} = {
 m a} + {
 m b} \ {
 m CO}_{2{
 m i}} + {
 m noise}$
 - $-\beta_{j} = c + d SOI_{j} + noise$

- Computational challenge: Model selection With what rates should the $\mu_{i(t)}$, $\beta_{j(t)}$, and variances of the e_t evolve? (1000's of combinations)
- Decadal Prediction
 - Build model using observations up to 1994
 - Forecast for the following 10 years using a stochastic model for SOI
 - Next Graphic: show NH and SH observed temp's and ensembles from our predictive distributions (First panel: $\mu_{i(t)}$ varying every 8 years, $\beta_{i(t)}$ varying every 2 years
 - second panel: $\mu_{i(t)}$ varying every 8 years,

 $oldsymbol{eta_{j(t)}}$ varying every 4 years)

NCAR Workshop: Petascale Computing 5-7 May, 2008

NCAR Workshop: Petascale Computing 5-7 May, 2008

1. Bayesian Networks

2. Competing Networks

Discussion

• Joe's talk