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Bayesian Modeling: Selected Features

e Bayesian Analysis: treating uncertainty and knowledge

— Combine observations & other information sources formally
— Uncertainty management is paramount

— Inputs and outputs are probability distributions
® Mechanism: probability theory
e Challenges: (I) formulation of models; (IT) computation.
e Two general arenas

1. Stochastic Dynamic Modeling: developing probability
models for a complex system (within & across space-time scales;
coarse graining; stochastic parameters & parameterizations)

2. Forecasting: learning about and predicting an unobserved
trajectory of a dynamical system (NWP; data assimilation)
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Modeling device: Bayesian Hierarchical Models (BHM)

e HM: Sequences of conditional probability models
P(x,y,z) = p(x|y,z)p(y | 2) p(2)

e Skeleton BHM, Observations y; Processes x; Parameters 6

1. Data Model q(y [x, 6)
2. Prior Process Model p(x|0)
3. Prior Parameter Model p(0)

e Bayes’ Theorem gives Posterior Distribution:

p(x,0|y) x q(y|x,0)p(x|0)p(6)
= q(y|x,0)p(x|0)p(0)/q(y)

where q(y) = [q(y|x,0)p(x|6)p(0)dxdb
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What Does This Buy Us?

e Combining information: “Physical-statistical modeling” (Berliner,
JGR, 2003)

e Quantifying and dealing with uncertainty!!
e SGS parameterization? (ECMWF & “stoch-physics”)
A. Operational impact of chaos: treat things as random.

B. From a deterministic physical model, D(x,0,,) =0
to a stochastic model p(X | )

e “Approximate physics (D) applied approximately
(discretize D) and unsurely (6; forcings unknown)”

e (Berliner, Milliff, Wikle, 2003, J GR) Air-sea interaction:

R (G IR LA i CuLT(W) < VR Ty,

I see p(¢1|%¢, 8, winds, boundary & initial con.)
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C. Parameterization: Physical variables X, Z = (Z,,Z,)
e Discrete Time Physical Model:
~ X1 = h(Xy, Zesa)
— Z 1 = g(Xy, Zt)
e Numerical, parameterized model
— Xtr1 = B(Xt; Zrt41, Zu,t~|—1) and zy 41 ~ F (x4, Zrt41, ) give
— Xt41 = G(Xt, Zy t+1, F(Xt, Zy t+1, 9))
1. Stochastic-Bayesian Parameterization
P(Xt+1 ’ Xty Zy t+15 9) = /P(Xt+1 ’ Xty Zut+1) Zr t+1, 0)p(zu,t+1 \ Xty Zrt+1, 9)dZu,t+1
2. On-the-fly Stochastic-Bayesian Parameterization
P(X¢+1 | Xt,Zr,t+1,9,Y) = /p(Xt+1 | Xt,Zu,t+1,Zr,t+1,9,Y)

P(Zu,t+1 \ Xty Zy t+1, 0, Y)dZu,t+1

e Both Bayesian parameterizations are built using observations,
model explorations, etc.
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Bayesian Computation and Monte Carlo

e Bayes’ Theorem gives Posterior Distribution:

pP(x,0]y) =q(y|x,0)p(x|0)p(0)/q(y)
where q(y) = [q(y|x,0)p(x|6)p(0)dxdb

e If q(y) is intractable, turn to Monte Carlo.

1. Monte Carlo (MC)

e Sample or ensemble x!, ..., xM from p(x | y)
(Suppress 0)

e Estimate expectations: (notation: E( ) same as < >)
A 1 .
E(h = [h{x)p(x | y)dx by E(h|y) =73 h(x)

e That is, approximate p(x | y) by discrete, uniform distribution on
the sample: Pr(X =x!) = 1/M
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2. Importance Sampling (ISMC)

e Direct sampling from p(x |y) very hard or not possible
e Sample x!,... . xM from g
e Estimate

E(b(X) |y) - [h(x)PX 1Y) : = 13)

i\ P
g(X) g(X)dX by Mzh(x) g(Xl)

e Usual alternative:

— Define normalized ISMC weights «a; = w(x')/ S w(x)) where
wix) = p(xd | y)/g(x)

— Estimation: E(h |y) = £ a;h(x})

— Approximate p(x | y) by discrete distribution {x!,a; :i=1,...,M}:
Pr(X =x!) = oy

— Key: the normalizer q(y) of p(x | y) cancels in the a’s so we
only need p(x | y) up to proportionality.
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Notes on ISMC

e Particle Filter: Evolve or generate x! over time.

— Sample {x} ; ;¢ 1:i=1,...,M} representing p(x; 1 | yt_1)
— Generate x. ~ p(x; | xi ;)
{x} aj¢1:i=1,...,M} represents p(x; | y; 1)
(Forecast Step)
— Bayes’ Theorem converts to {x! a;;:i=1,..., m} representing
P(x¢ | y¢) where .
Qi X Q(Yt ‘ XDai,t—l

(Analysis Step)
e What we can do with an ensemble depends on how it was made.

e In high dimensions a’s are poorly behaved:
They concentrate on a few (or one!) ensemble members
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3. Markov Chain Monte Carlo (MCMC)

e Finding normalizer q(y) vrs finding “partition function” in
Statistical Mechanics

e MCMUC: Develop a stationary (ergodic) Markov chain with
limiting distribution coinciding with the target posterior p(x |y).

— After a “burn-in” (like “spin-up”) period, realizations from the
chain form an
ensemble from p(x | y) (approximately).

— Ensemble members are dependent, but MC estimation works
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Metropolis-Hastings

e State of chain at iterate i : x'

— generate X from some proposal distribution g(x | x!)

— generate independent U = Uniform(0,1) RV

—set x'T! = x if

— set x'*! = x!, otherwise.

e Key: Again, normalizer ((y) cancels.
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Gibbs Sampler

e x is a K-dimensional vector, (xi,...,XK)
e Derive “full conditionals” p(xy | x1,...,Xk 1, ,Xki1,---, Xk (and y))
— state of chain at iterate i: (x!,...,xk)
— generate x\"! from p(x; | x},x%,...,xk)
— generate x5 from p(x, | x{™, x5, ..., xk)
— generate xi! from p(xk | x1™, ... xiY)
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Others

e Metropolis-within-Gibbs: replace intractable full conditionals by
Metropolis steps.

e Using stochastic differential equation
du(t) = b(u)dt + o(u)dW(t)
where {W(t) : t > 0}
— (Theory & assumptions) U(t) has a density function p(u,t)
— p(u,t) is solution Fokker-Planck Equation

— Stationary solutions:
0% 0
0.50 8112(0 p) = 8u(b D)

— Pick b and o so that p is the target posterior
o ISMC-MCMC
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Key Points

e Monitoring convergence
e Output Analysis: Using output to summarize the target posterior.
e Tensions:

— Multiple runs vrs one long run
Wasted burnin periods vrs “mixing”

— Output from a run are dependent
2

Var(xi) = (1 + Y c(i)py)

e Embarassingly Parallel? Obvious: Multiple runs, but?
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Two Notions of Multiscale Modeling

1. Space-Time Filtering

e “Hierarchical” process prior: p(X,

o) Ml
=
241
e

e Up-down scaling: p(Xe, X | Xum)
e Terra incognita: p(Xy, | X¢, Xo) p(Xs X c)

edium
T
XX XXX \
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Example

e Data Model: q(Y. | Xc)q(YL yil) q(Y2 | X2)

e Process Prior: p(X. | XL, X2)p(X2) | XL)pXL)
Full Conditionals for Gibbs Sampler:

e F(X,. |rest ) o< q(Y. | Xc) p(Xe | XL, X2))

o F(X, |rest ) oc (Y3 | X3) p(Xe | Xh X2) p(X3, | X5)

o F(X], |rest ) oc a(Y, | XL) p(Xe | Xh, X3 p(XE, | Xh) p(XL)

e Note how all levels intertwine: challenge to parallel code

F(X.)

7 N
F(Xm') || F(Xn?)
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Example Cont’d: Potentials for parallel codes

(1) Run bottom nodes holding X, fixed
(i.e., we don’t have to update every variable every time,
though not doing so may slow convergence/)

e Master swaps across scales occasionally.

e Many scales: Management system

F(X.)

7 N
F(Xu') || F(Xw?)
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Example Cont’d: Potentials for parallel codes
(2) Partial Conditionals for Gibbs Sampler with ISMC:

o F(X, | rest ) x q(Y. | Xc) p(Xe | X}, X2)

o Fp(X, [ rest ) oca(Y7, | X2) p(X3, | X)) {p(Xc | X0, X3}

o Fp(X], | rest ) oc q(Yy, | X3) (X)) {p(Xe | X, X3) (X, [ X))
— Ignoring terms in brackets if results are simple

— But, those terms form required IS weights

— Speed versus memory

F(Xc)

N

F(Xm?) || F(Xm?)
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2. Parameterization of Scales

e Build or “parameterize” scales into dynamic model for X
Example (Berliner & Kim, 2008, J Clim)

e X: monthly surface temperatures

e Time series models (AR) with time varying parameters

Xi = Fit) + Bj(t)(Xt—l - /'l'i(t—l)) + €(t)

® 1) slowly vary (climate scale); B3y vary moderately (another
climate scale); e; vary quickly (“weather”), but their variances
slowly vary (climate scale):

— p; = a—+ b COg; + noise
— B; = ¢ +d SOI; + noise
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e Computational challenge: Model selection
With what rates should the p;y, Biq)s
and variances of the e; evolve?

(1000’s of combinations)

e Decadal Prediction

— Build model using observations up to 1994

— Forecast for the following 10 years using a stochastic model for
SOI

— Next Graphic: show NH and SH observed temp’s and
ensembles from our predictive distributions
(First panel: M) varying every 8 years,
Bit) varying every 2 years
second panel: p;y) varying every 8 years,
By varying every 4 years)

NCAR Workshop: Petascale Computing 5-7 May, 2008



16 T T
1550 /\ /“ ,

A A A
~ /\ | Vil \
g // \ —AAN f h ﬁ/\ M /\A\j \ N\ /v/ v w\ /'/ \\
R BBV ISl AW AT i
8 VM\J \J
g 145
g
@

Q
€
(5]
'—
13 | | | | |
1994 1996 1998 2000 2002 2004
Year
16 T
155 /\ /\
x AN
N / \\ A ;/\N /\ /\/\ Y /\»/\/\‘ \L/\v,M A\ N ‘»M\\/,/ \
155 NN Mvv AN W
v RV \//

Temperature(Celcius)

13
1994 1996 1998 2000 2002 2004

NCAR Workshop: Petascale Computing 5-7 May, 2008



1. Bayesian Networks 2. Competing Networks
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Discussion

e Joe’s talk



