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RBF idea,   In pictures:_____________________________________________

1970 Invention of RBFs (for application in cartography)   

Some other key dates:

1940 Unconditional non-singularity for many types of radial functions
1984 Unconditional non-singularity for multiquadrics  ( )�(r) = 1 + (� r )2

1990 First application to numerical solutions of PDEs
2002 Flat RBF limit exists - generalizes all 'classical' pseudospectral methods 
2004 First numerically stable algorithm in flat basis function limit
2007 First application of RBFs to geophysical test problems on a sphere
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RBF idea,   In formulas:____________________________________________

Given scattered data  (xk , fk), k = 1, 2, ... , N, the coefficients  in  �k s(x) = �
k=1

N

�k �(||x − x
k
||)

are found by collocation:    ,  k = 1, 2, ... , N :s(x
k
) = fk
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Key theorems: - For 'most' , this system can never be singular.�(r)
- Spectral accuracy for smooth radial functions

Main present issues: - Defeat numerical ill-conditioning

- Reduce the computational cost
Most immediate algorithms (RBF-Direct):

Solve system above for  λk: O(N 3)   operations 
Evaluate interpolant at M locations: O(M N) operations
Applying approximation of space derivatives: O(N 2)   operations

- Develop fast and scalable codes for large-scale parallel computers
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Moving Vortices on A Sphere________________________________________ 
(Flyer and Lehto, 2008)

Method of lines formulation:      Øh
Øt = − U(�,�,�, t ) * = h w

Øh
Øt = −

u(t)
cos�DN

� + v(t)DN
� h

 and  are discrete RBF differentiation matrices: - Free of Pole Singularities  DN
� DN

�

    - Error Invariant of α, angle of rotation

Inverse Multiquadrics RBFs; 12 Day Simulation
N = 3136 nodes
�t = 20 minutes; 4 th order Runge-Kutta

ME Nodes     Node Refinement                Final Solution
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Final Solution and Magnitude of Error________________________________
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Comparison With Other Methods____________________________

5 $ 10−24 $ 10−260N = 10512Semi-Lagrangian [2]

7 $ 10−32 $ 10−36N = 9600Discontinuous Galerkin [2]

2 $ 10−35 $ 10−4100.625oFinite Volume [2]

4 $ 10−33 $ 10−380N = , 6.4o3136RBF [1]

With uniform node distribution

2 $ 10−32 $ 10−3VariableBase 5o ;
3 level adaptive

Finite Volume AMR [2]

8 $ 10−54 $ 10−520N = 3136RBF [1] 
 
With local node refinement

´2´1t (mins.)¿ ResolutionMethod

References:

[1] Flyer, N. and Lehto, E., A radial basis function implementation of local node refinement: Two vortex test cases on a sphere, to be submitted to
Mon. Wea. Rev.

[2] Nair, R.D. and Jablonowski, C., Moving vortices on the sphere: A test case for horizontal advection problems, Mon. Wea. Rev. 136 (2008), 699-711.
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Full Nonlinear Unsteady Shallow Water Equations______________
(Flyer and Wright, 2008)

Description: Forcing terms added to the shallow water equations to generate a flow that    
mimics a short wave trough embedded in a westerly jet

N = 3136
�t = 10 minutes
RK4 time-stepping; 5 day run

 Geopotential height, 50m contour intervals        |Exact-Numerical| Error

    1.4 (10 -4)

    (white<10-5)
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Comparison with Other Methods____________________________

   4  · 10 -545 seconds24576
 6.5 · 10 -390 seconds  6144Spectral Elements [4]

 8.2 · 10 -3  3 minutes  8192
 3.9 · 10 -1  6 minutes  2048Double Fourier [3]

   2  · 10 -320 minutes*  8192      (T42)Spherical Harmonics [2]

3.84 · 10 -8  6 minutes  5041       (712)

2.57 · 10 -7  8 minutes  4096       (642)
8.91 · 10 -610 minutes  3136       (562)
3.47 · 10 -312 minutes  1849       (432)
4.96 · 10 -120 minutes    748       (282)RBF [1]

Relative l2
error in  h

Time stepNumber of
grid points

Method

 * semi-implicit time stepping  

References:

[1] Flyer, N. and Wright, G.B., Solving the shallow water equations on a sphere using radial basis functions, to be submitted to JCP.
[2] Jacob-Chien, R., Hack, J.J. and Williamson, D.L., Spectral transform solutions to the shallow water test set, JCP 119 (1995), 164-187.
[3] Spotz, W.F., Taylor, M.A. and Swarztrauber, P.N., Fast shallow water equation solvers in latutude-longitude coordinates, JCP 145 (1998), 432-444.
[4] Taylor, M., Tribbia, J. and Iskadrarani, M., The spectral element method for the shallow water equations on the sphere, JCP 130 (1997), 92-108.
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Numerical conditioning, and the flat RBF limit  (ε → 0)__________________

Classical basis functions are usually RBFs are translates of one
highly oscillatory single function - here  �(r) = e−(� r)2

       ε = 10

        ε = 1

       ε = 0.1

       ε = 0.01

Condition number of RBF matrix  ;   Exact values are available for  O(�−� (N)) �(N) :
(Fornberg and Zuev, 2007)

  about 500 modes  about 50 modes  about 5 modesResolves in each
direction

3,632n = 109360n = 10634n = 103 3-D (non-periodic) 
2,826n = 106280n = 10426n = 1022-D (non-periodic)

1,998n = 103198n = 10218n = 1011-D (non-periodic)

α(n)α(n)α(n)
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Why are flat (or near-flat) RBFs interesting?____________________________

- Intriguing error trends as ε → 0
'Toy-problem' example:  41 node MQ interpolation of  f(x1,x2) = 59

67 + (x1 + 1
7 )2 + (x2 − 1

11 )

- RBF interpolant in 1-D reduces to Lagrange's interpolation polynomial   
(Driscoll and Fornberg, 2002)

- In any number of dimensions,  the ε → 0 limit reduces to 'classical' PS methods
if used on tensor type grids.

- The RBF approach generalize PS methods in many ways:
- Guaranteed nonsingular also for scattered nodes on irregular geometries
- Allow spectral accuracy to be combined with mesh refinement
- Best accuracy often obtained not in the ε → 0 limit, but for larger ε.

      Solving    followed by evaluating   A� = f s(x, �) =�k=1
N
�k �(||x − x

k
||)

      is merely an unstable algorithm for a stable problem
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      Solving    followed by evaluating   A� = f s(x, �) =�k=1
N
�k �(||x − x

k
||)

      is merely an unstable algorithm for a stable problem

Numerical computations for small values of  ε_________________________

- High precision arithmetic It is known exactly how the condition number varies with domain
type, N, ε . Approach often costly.

- Algorithms that completely bypass ill-conditioning all the way into ε→0  limit,
while using only standard precision arithmetic: 
Find a computational path from f to s(x,ε) that does not go via the ill-conditioned λ. 

- Contour-Padé algorithm First algorithm of its kind; established that concept is possible;

limited to relatively small N-values (Fornberg and Wright, 2004)

Simplified version Contour-SVD under development.

- RBF-QR method    So far developed only for nodes scattered over the surface 
of a sphere (Fornberg and Piret, 2007).
No limit on N; cost about five times that of RBF-Direct (even as
ε→0).

Probably many more genuinely stable algorithms to come...
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Background to RBF-QR for spheres: Spherical Harmonics (SPH)__

Spherical harmonics: Restriction to surface of unit sphere of simple polynomials in x, y, z: 
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-  Counterpart to Fourier modes
    around periphery of unit circle

-  Orthogonal 

-  Uniform resolution over surface

-   Spectral accuracy for PDEs

but

-   Not associated with any
    particular node set

-   No clear counterpart to FFT

-   No opportunities for variable
     resolution
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Expansions of RBFs in terms of SPH____________________________________

RBFs, centered on the surface of the unit sphere, can be expanded in SPH as follows:

    � ( ||x − x
i
|| ) = �
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Key points of the RBF-QR algorithm  (Fornberg and Piret, 2007):

- There is no loss of accuracy in computing   even if   .c
,� Y
� (x i
), � d 0

- The factors  contain all the ill-conditioning, and they can be  analytically kept out of�2


the numerical algorithm in going from data values to interpolant values.

- Algorithm involves, among other steps, a QR factorization.

- The algorithm proves that, as ε → 0 , the RBF interpolant (usually) converges to the
SPH interpolant
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Test case for interpolation________________________________________________

Test function:       1849 minimal energy nodes  Error: RBF-Direct vs. RBF-QR

f(x) = e−7(x+ 1
2 )2−8(y+ 1

2 )2−9(z− 1
2

)2

RBF-Direct: cond(A) = O(ε -84); each 16 extra decimal digits of arithmetic precision lowers the
onset of ill-conditioning by a factor of  0.65 for ε.

Since RBF ε → 0 limit agrees with the SPH interpolant, why not just use the latter?

- The error often increases in the last stages of  ε → 0

- The SPH interpolant can be singular for certain node distributions - the RBF interpolant
can never be singular

- RBFs offer opportunities for local node refinement
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Long time integration of convective flow over a sphere______________
(Fornberg and Piret, 2008)  -  follow-up on shorter-time integration with GA and RBF-Direct by Flyer and Wright (2007) 

'Unrolled' spherical coordinate system Initial condition: Cosine bell, discretized at
n = 1849 'minimal energy' nodes

One full rotation corresponds to  t = 2π

Some observations:

- Smooth global RBF types give almost
 identical results once ε is small enough.

- Smooth RBFs important even if the
convected solution is not smooth.

- Robust results require ε some two orders
of magnitude below what RBF-Direct 
provides.
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Error evolution up to time t = 10,000___________________________________

Error for smooth RBF types does not increase with time (no trailing dispersive wake)
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Operation counts for the RBF-Direct algorithm______________________

Three main tasks (in case of RBF-Direct):

1. Given data (xk , fk), k = 1, 2, ... , N, solve linear systems

  O(N 
3) operations
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2. Given , evaluate   at M different locations. O(M N) operations�k s(x) = �
k=1

N

�k �(||x − x
k
||)

3. Perform matrix - vector multiplications  . O(N 
2) operationsLu = D u

All steps of very simple 'structure' (quite straightforward parallelization), but:

A wealth of opportunities are available for algorithms which both:

- reduce operation count
- reduce memory requirement
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Fast RBF algorithms in cases of large ε___________________________
Surveyed for ex. in Fasshauer: Meshfree Approximation Methods with Matlab (World Scientific, 2007)

1. Non-uniform Fast Fourier Transform
2. Fast multipole method
3. Fast tree codes
4. Domain decomposition methods
5. Krylov-type iterations
6. Fast Gauss transform
7. The BFGP algorithm
8. Sparse matrix approaches based on compact RBFs
 : ??????? (more algorithms are bound to be discovered)

Stable RBF algorithms in cases of small ε_________________________

1. Contour-Padé Severe limitation on number of nodes (  in 1-D,  in 2-D)N é 20 N é 200
2. RBF-QR Works for thousands of nodes on the sphere
 : ??????? (more algorithms are bound to be discovered)

Challenge:  Find an algorithm that combines high speed with numerically stability

RBF-generated Finite Differences (FD)___________________________
- Resolves cost and conditioning issues
- All approximations 'local' - much less message passing in parallel computing environments
but
- Algebraic instead of spectral accuracy
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Conclusions________________________________________________

Established:

- RBFs can be seen as a generalization of PS methods to arbitrarily shaped domains.

- RBFs can offer excellent accuracy also over very long integration times.

- The near-flat basis function regime (ε small) is found to be of particular interest, and
the first genuinely stable numerical algorithms for this case are emerging.

- After ill-conditioning has been eliminated, the next accuracy-limiting factor has been
identified (found to be related to the polynomial Runge phenomenon).

- Many types of fast algorithms exist - however so far only for large ε.

Current research issues: 

- Compare RBFs against alternative methods for standard test problems.

- Explore further the combination of spectral accuracy with local node refinement.

- Find RBF algorithms that combine high speed with numerical stability (for small ε).
 

- Develop further the concept of RBF-generated FD formulas.

If you had access to a peta-scale computing system, what would you do with it?

2008 NCAR Theme Of The Year Slide 19 of 19


