Long time integrations of a convective PDE on the sphere by RBF collocation

Bengt Fornberg

and

University of Colorado Department of Applied Mathematics

Natasha Flyer

NCAR Institute for Mathematics Applied to Geosceinces

Collaborators:

Cécile Piret, Grady Wright, Erik Lehto

RBF idea, In pictures:

1970 Invention of RBFs (for application in cartography)

Some other key dates:

- 1940 Unconditional non-singularity for many types of radial functions
- 1984 Unconditional non-singularity for multiquadrics $(\phi(r) = \sqrt{1 + (\epsilon r)^2})$
- 1990 First application to numerical solutions of PDEs
- 2002 Flat RBF limit exists generalizes all 'classical' pseudospectral methods
- 2004 First numerically stable algorithm in flat basis function limit
- 2007 First application of RBFs to geophysical test problems on a sphere

RBF idea, In formulas:

Given scattered data $(\underline{x}_k, f_k), k = 1, 2, ..., N$, the coefficients λ_k in $s(\underline{x}) = \sum_{k=1}^{N} \lambda_k \phi(||\underline{x} - \underline{x}_k||)$ are found by collocation: $s(\underline{x}_k) = f_k$, k = 1, 2, ..., N:

$$\begin{bmatrix} \phi(||\underline{x}_1 - \underline{x}_1||) & \phi(||\underline{x}_1 - \underline{x}_2||) & \cdots & \phi(||\underline{x}_1 - \underline{x}_N||) \\ \phi(||\underline{x}_2 - \underline{x}_1||) & \phi(||\underline{x}_2 - \underline{x}_2||) & \cdots & \phi(||\underline{x}_2 - \underline{x}_N||) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(||\underline{x}_N - \underline{x}_1||) & \phi(||\underline{x}_N - \underline{x}_2||) & \cdots & \phi(||\underline{x}_N - \underline{x}_N||) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \vdots \\ \lambda_N \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ \vdots \\ f_N \end{bmatrix}$$

Key theorems:

- For 'most' $\phi(r)$, this system can never be singular.
- Spectral accuracy for smooth radial functions

Main present issues: -

- Defeat numerical ill-conditioning
- Reduce the computational cost Most immediate algorithms (RBF-Direct): Solve system above for λ_k : Evaluate interpolant at *M* locations: Applying approximation of space derivatives:

 $O(N^3)$ operations O(M N) operations $O(N^2)$ operations

- Develop fast and scalable codes for large-scale parallel computers

Moving Vortices on A Sphere

(Flyer and Lehto, 2008)

Method of lines formulation:

$$\frac{\partial h}{\partial t} = -\left(\underline{U}(a,\theta,\varphi,t) \bullet \nabla\right)h \qquad \Longleftrightarrow \qquad \frac{\partial h}{\partial t} = -\left(\frac{u(t)}{\cos\theta}D_N^{\varphi} + v(t)D_N^{\theta}\right)h$$

 D_N^{φ} and D_N^{θ} are discrete RBF differentiation matrices: - Free of Pole Singularities

- Error Invariant of α , angle of rotation -

Inverse Multiquadrics RBFs; 12 Day Simulation N = 3136 nodes $\Delta t = 20$ minutes; 4th order Runge-Kutta

Final Solution and Magnitude of Error

Comparison With Other Methods

Method	Resolution	<i>∆t</i> (mins.)	ℓ 1	ℓ ₂					
With local node refinement									
RBF [1]	N = 3136	20	4 · 10 ^{−5}	8 · 10 ^{−5}					
Finite Volume AMR [2]	Base 5° ; 3 level adaptive	Variable	2 · 10 ^{−3}	2 · 10 ^{−3}					
With uniform node distribution									
RBF [1]	<i>N</i> = 3136, 6.4°	80	3 · 10 ^{−3}	4 · 10 ^{−3}					
Finite Volume [2]	0.625°	10	5 · 10 ⁻⁴	2·10 ⁻³					
Discontinuous Galerkin [2]	N = 9600	6	2·10 ⁻³	7 · 10 ^{−3}					
Semi-Lagrangian [2]	<i>N</i> = 10512	60	4 · 10 ^{−2}	5·10 ⁻²					

References:

- [1] Flyer, N. and Lehto, E., A radial basis function implementation of local node refinement: Two vortex test cases on a sphere, to be submitted to Mon. Wea. Rev.
- [2] Nair, R.D. and Jablonowski, C., Moving vortices on the sphere: A test case for horizontal advection problems, Mon. Wea. Rev. 136 (2008), 699-711.

Full Nonlinear Unsteady Shallow Water Equations

(Flyer and Wright, 2008)

<u>Description:</u> Forcing terms added to the shallow water equations to generate a flow that mimics a short wave trough embedded in a westerly jet

N = 3136 $\Delta t = 10$ minutes RK4 time-stepping; 5 day run

Geopotential height, 50m contour intervals

|Exact-Numerical| Error

Comparison with Other Methods

Method	Number of		Time step	Relative <i>I</i> ₂
	grid points			error in h
RBF [1]	748	(28 ²)	20 minutes	4.96 · 10 ⁻¹
	1849	(43 ²)	12 minutes	3.47 · 10 ⁻³
	3136	(56 ²)	10 minutes	8.91 · 10 ⁻⁶
	4096	(64 ²)	8 minutes	2.57 · 10 ⁻⁷
	5041	(71 ²)	6 minutes	3.84 · 10 ⁻⁸
Spherical Harmonics [2]	8192	(<i>T</i> 42)	20 minutes*	2 · 10 ⁻³
Double Fourier [3]	2048		6 minutes	3.9 · 10 ⁻¹
	8192		3 minutes	8.2 · 10 ⁻³
Spectral Elements [4]	6144		90 seconds	6.5 · 10 ⁻³
	24576		45 seconds	4 · 10 ⁻⁵

semi-implicit time stepping

References:

- [1] Flyer, N. and Wright, G.B., Solving the shallow water equations on a sphere using radial basis functions, to be submitted to JCP.
- [2] Jacob-Chien, R., Hack, J.J. and Williamson, D.L., Spectral transform solutions to the shallow water test set, JCP 119 (1995), 164-187.
- [3] Spotz, W.F., Taylor, M.A. and Swarztrauber, P.N., Fast shallow water equation solvers in latutude-longitude coordinates, JCP 145 (1998), 432-444.
- [4] Taylor, M., Tribbia, J. and Iskadrarani, M., The spectral element method for the shallow water equations on the sphere, JCP 130 (1997), 92-108.

Numerical conditioning, and the flat RBF limit ($\epsilon \rightarrow 0$)

Classical basis functions are usually highly oscillatory

RBFs are translates of one single function - here $\phi(\mathbf{r}) = e^{-(\varepsilon \mathbf{r})^2}$

Condition number of RBF matrix $O(\varepsilon^{-a(N)})$; Exact values are available for a(N): (Fornberg and Zuev, 2007)

		$\alpha(n)$		$\alpha(n)$		$\alpha(n)$
1-D (non-periodic)	$n = 10^{1}$	18	$n = 10^2$	198	$n = 10^{3}$	1,998
2-D (non-periodic)	$n = 10^{2}$	26	$n = 10^4$	280	$n = 10^{6}$	2,826
3-D (non-periodic)	$n = 10^{3}$	34	$n = 10^{6}$	360	$n = 10^9$	3,632
Resolves in each	about 5 modes		about 50 modes		about 500 modes	
direction						

Why are flat (or near-flat) RBFs interesting?

- Intriguing error trends as $\epsilon \rightarrow 0$

<u>'Toy-problem' example:</u> 41 node MQ interpolation of $f(x_1, x_2) = \frac{59}{67 + (x_1 + \frac{1}{7})^2 + (x_2 - \frac{1}{11})^2}$

- RBF interpolant in 1-D reduces to Lagrange's interpolation polynomial (Driscoll and Fornberg, 2002)
- In any number of dimensions, the $\epsilon \rightarrow 0$ limit reduces to 'classical' PS methods if used on tensor type grids.
- The RBF approach generalize PS methods in many ways:
 - Guaranteed nonsingular also for scattered nodes on irregular geometries
 - Allow spectral accuracy to be combined with mesh refinement
 - Best accuracy often obtained not in the $\varepsilon \rightarrow 0$ limit, but for larger ε .

Solving $A\underline{\lambda} = \underline{f}$ followed by evaluating $s(\underline{x}, \varepsilon) = \sum_{k=1}^{N} \lambda_k \phi(||\underline{x} - \underline{x}_k||)$ is merely an unstable algorithm for a stable problem

Solving $A\underline{\lambda} = \underline{f}$ followed by evaluating $s(\underline{x}, \varepsilon) = \sum_{k=1}^{N} \lambda_k \phi(||\underline{x} - \underline{x}_k||)$ is merely an unstable algorithm for a stable problem

<u>Numerical computations for small values of ε </u>

- High precision arithmetic It is known exactly how the condition number varies with domain type, *N*, ε. Approach often costly.
- Algorithms that completely bypass ill-conditioning all the way into $\varepsilon \rightarrow 0$ limit, while using only standard precision arithmetic: Find a computational path from <u>*f*</u> to $s(\underline{x},\varepsilon)$ that does not go via the ill-conditioned $\underline{\lambda}$.
 - Contour-Padé algorithm First algorithm of its kind; established that concept is possible; limited to relatively small *N*-values (Fornberg and Wright, 2004) Simplified version Contour-SVD under development.
 - RBF-QR method So far developed only for nodes scattered over the surface of a sphere (Fornberg and Piret, 2007). No limit on *N*; cost about five times that of RBF-Direct (even as $\varepsilon \rightarrow 0$).

Probably many more genuinely stable algorithms to come...

Background to RBF-QR for spheres: Spherical Harmonics (SPH)

Spherical harmonics: Restriction to surface of unit sphere of simple polynomials in *x*, *y*, *z*:

Expansions of RBFs in terms of SPH

RBFs, centered on the surface of the unit sphere, can be expanded in SPH as follows:

$$\phi(||\underline{\mathbf{X}}-\underline{\mathbf{X}}_{i}||) = \sum_{\mu=0}^{\infty} \sum_{\nu=-\mu}^{\mu} \left\{ \varepsilon^{2\mu} \mathbf{C}_{\mu,\varepsilon} \; \mathbf{Y}_{\mu}^{\nu}(\underline{\mathbf{X}}_{i}) \right\} \; \mathbf{Y}_{\mu}^{\nu}(\underline{\mathbf{X}})$$

where, for example

MQ:
$$\phi(r) = \sqrt{1 + (\varepsilon r)^2}$$
 $C_{\mu,\varepsilon} = \frac{-2\pi(2\varepsilon^2 + 1 + (\mu + \frac{1}{2})\sqrt{1 + 4\varepsilon^2})}{(\mu + \frac{3}{2})(\mu + \frac{1}{2})(\mu - \frac{1}{2})} \left(\frac{2}{1 + \sqrt{4\varepsilon^2 + 1}}\right)^{2\mu + 1}$

MQ:
$$\phi(r) = \frac{1}{\sqrt{1 + (\epsilon r)^2}}$$
 $C_{\mu,\epsilon} = \frac{4\pi}{(\mu + \frac{1}{2})} \left(\frac{2}{1 + \sqrt{4\epsilon^2 + 1}}\right)^{2\mu + 1}$

Key points of the RBF-QR algorithm (Fornberg and Piret, 2007):

- There is no loss of accuracy in computing $c_{\mu,\varepsilon} Y^{\nu}_{\mu}(\underline{x}_{i})$, even if $\varepsilon \to 0$.
- The factors $\varepsilon^{2\mu}$ contain all the ill-conditioning, and they can be *analytically* kept out of the numerical algorithm in going from data values to interpolant values.
- Algorithm involves, among other steps, a QR factorization.
- The algorithm proves that, as $\epsilon \to 0$, the RBF interpolant (usually) converges to the SPH interpolant

Test case for interpolation

Test function:

1849 minimal energy nodes Error: RBF-Direct vs. RBF-QR

RBF-Direct: cond(*A*) = $O(\varepsilon^{-84})$; each 16 extra decimal digits of arithmetic precision lowers the onset of ill-conditioning by a factor of 0.65 for ε .

Since RBF $\varepsilon \rightarrow 0$ limit agrees with the SPH interpolant, why not just use the latter?

- The error often increases in the last stages of $\varepsilon \rightarrow 0$
- The SPH interpolant can be singular for certain node distributions the RBF interpolant can never be singular
- RBFs offer opportunities for local node refinement

Long time integration of convective flow over a sphere

(Fornberg and Piret, 2008) - follow-up on shorter-time integration with GA and RBF-Direct by Flyer and Wright (2007)

'Unrolled' spherical coordinate system

One full rotation corresponds to $t = 2\pi$

Some observations:

- Smooth global RBF types give almost identical results once ϵ is small enough.
- Smooth RBFs important even if the convected solution is not smooth.
- Robust results require ε some two orders of magnitude below what RBF-Direct provides.

Initial condition: Cosine bell, discretized at n = 1849 'minimal energy' nodes

Error for smooth RBF types does not increase with time (no trailing dispersive wake)

Three main tasks (in case of RBF-Direct):

1. Given data
$$(\underline{x}_{k}, f_{k}), k = 1, 2, ..., N$$
, solve linear systems

$$\begin{bmatrix} \phi(||\underline{x}_{1} - \underline{x}_{1}||) \phi(||\underline{x}_{1} - \underline{x}_{2}||) \cdots \phi(||\underline{x}_{1} - \underline{x}_{N}||) \\ \phi(||\underline{x}_{2} - \underline{x}_{1}||) \phi(||\underline{x}_{2} - \underline{x}_{2}||) \cdots \phi(||\underline{x}_{2} - \underline{x}_{N}||) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(||\underline{x}_{N} - \underline{x}_{1}||) \phi(||\underline{x}_{N} - \underline{x}_{2}||) \cdots \phi(||\underline{x}_{N} - \underline{x}_{N}||) \end{bmatrix} \begin{bmatrix} \lambda_{1} \\ \vdots \\ \lambda_{N} \end{bmatrix} = \begin{bmatrix} f_{1} \\ \vdots \\ f_{N} \end{bmatrix}$$
2. Given λ_{k} , evaluate $s(\underline{x}) = \sum_{k=1}^{N} \lambda_{k} \phi(||\underline{x} - \underline{x}_{k}||)$ at M different locations. $O(M N)$ operations
3. Perform matrix - vector multiplications $\begin{bmatrix} Lu \\ u \end{bmatrix} = \begin{bmatrix} D \\ D \end{bmatrix} \begin{bmatrix} u \\ u \end{bmatrix}$. $O(N^{2})$ operations

All steps of very simple 'structure' (quite straightforward parallelization), but:

A wealth of opportunities are available for algorithms which both:

- reduce operation count
- reduce memory requirement

Fast RBF algorithms in cases of large ε

Surveyed for ex. in Fasshauer: Meshfree Approximation Methods with Matlab (World Scientific, 2007)

- 1. Non-uniform Fast Fourier Transform
- 2. Fast multipole method
- 3. Fast tree codes
- 4. Domain decomposition methods
- 5. Krylov-type iterations
- 6. Fast Gauss transform
- 7. The BFGP algorithm
- 8. Sparse matrix approaches based on compact RBFs
- : ??????? (more algorithms are bound to be discovered)

Stable RBF algorithms in cases of small ε

- 1. Contour-Padé Severe limitation on number of nodes ($N \le 20$ in 1-D, $N \le 200$ in 2-D)
- 2. RBF-QR Works for thousands of nodes on the sphere
- : ??????? (more algorithms are bound to be discovered)

<u>Challenge:</u> Find an algorithm that combines high speed with numerically stability

RBF-generated Finite Differences (FD)

- Resolves cost and conditioning issues
- All approximations 'local' much less message passing in parallel computing environments but
- Algebraic instead of spectral accuracy

Conclusions

Established:

- RBFs can be seen as a generalization of PS methods to arbitrarily shaped domains.
- RBFs can offer excellent accuracy also over very long integration times.
- The near-flat basis function regime (ϵ small) is found to be of particular interest, and the first genuinely stable numerical algorithms for this case are emerging.
- After ill-conditioning has been eliminated, the next accuracy-limiting factor has been identified (found to be related to the polynomial Runge phenomenon).
- Many types of fast algorithms exist however so far only for large ε .

Current research issues:

- Compare RBFs against alternative methods for standard test problems.
- Explore further the combination of spectral accuracy with local node refinement.
- Find RBF algorithms that combine high speed with numerical stability (for small ε).
- Develop further the concept of RBF-generated FD formulas.

If you had access to a peta-scale computing system, what would you do with it?

2008 NCAR Theme Of The Year