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Meshless RBFs model irregular domains



Examples of difficult meshing problems

Refinery Heat exchangerHuman Heart



Topics of implementation interest

–
 

Convergence theory and implementation
–

 
Poor conditioning of systems of equations

–
 

Optimal discretization
–

 
Domain decomposition & preconditioners

–
 

Better solvers-Improved truncated-SVD
–

 
High precision arithmetic

–
 

Variable shape parameters
–

 
Front tracking examples



H-scheme and c-scheme combined:
 PDEs and boundary conditions

•
 

MQ is a prewavelet (Buhmann & Chui)
•

 
Write MQ as φj

 

(x) =[1 +{(x-xj

 

)/cj

 

}2] β
•

 
xj is the translator

•
 

cj is the dilator, and
•

 
[1 +{(x-xj

 

)/cj

 

}2] β
 

is rotationally invariant.
•

 
β

 
influences the shape of φj

 

(x) .

•
 

MQ cannot be a prewavelet if cj

 

is uniformly 
constant. In addition, the rows of the 
coefficient matrix are nearly identical.



Theoretical convergence and 
implementation
•

 
Maych (1992) showed MQ interpolation and derivative 
estimates converge as:

•
 

O(λμ
 

-|m|) where  0 <
 

λ

 
< 1, μ

 
=(c/h), and m is the order of 

differentiation,

•
 

Dm

 

= {∂m1∂m2…∂mk}/ {∂x1
m1∂x2

m2…∂xk
mk}, 

•
 

h = sup i,j
 

||xi

 

-xj

 

||

•
 

Higher order differentiation lessens the convergence rate, 
and integration increases the convergence rate.



Goal: Obtain the best accuracy with 
minimal CPU time

•
 

For convergence, we want μ=(c/h) → ∞ .

•
 

The h-scheme: refine h, keep c
 

fixed.

•
 

The c-scheme: increase c, keep h small. 

•
 

The c-scheme is ideal and most efficient, but
can be quite ill-conditioned.



Schaback’s
 

trade-off principle

•
 

Compactly supported well conditioned 
schemes converge very slowly.

•
 

Wide-band width schemes that 
converge at exponential rates are very 
often very ill-conditioned.



Ill-conditioning can sometimes yield very 
accurate solutions: Aα =

 
b

•
 

Let σ be the singular values of A.

•
 
κabs

 

= max(σ)/min(σ)= || A ||·||A-¹||,

•
 
κrel

 

= ((|| Aα ||)/(|| α ||))·
 

|| A-¹ ||,

•
 

Often κrel

 

<<
 

κabs

 

, but not always.



Recommend h-scheme practices

•
 

Brute force fine h discretization is a throw-
 back to mesh-based FDM,FEM, or FVM.

•
 

High gradient regions require fine h and 
flatter regions require coarse h.

•
 

The local length scale is: ℓ
 

= k |U|/ |∇U|
 

,U is 
the unknown dependent variable, k is a 
constant.

•
 

Implementation: adaptive, multi-level local 
refinement are standard well-known tools.



T.A. Driscoll, A.R.H. Heryudono / Comput Math with 
Appl 53 (2007)

Use quad-tree refinement to reduce residual 
errors

H-scheme approach-
 

1



h-scheme approach-Greedy Algorithm-2

Ling, Hon, Schaback
•

 

Use large set of trial centers and test points

•
 

Find trial points with largest residual error, and keep 
point. 

•
 

Build set of trial points with largest residual, continue 
until largest residual < tolerance. Build equation 
system one at a time, very fast.

•
 

For many PDEs on irregular domains, about 80 -150 
points are needed to be within tolerance.



Domain decomposition:  Divide and 
Conquer for the h-scheme-3
•

 

Domain Decomposition: Parallel multilevel methods for elliptic 
PDEs (Smith, Bjorsted,Gropp) FEM

•

 

Use overlapping or non-overlapping sub-domains

•

 

For overlapping sub-domains, additive alternating Schwarz is 
fast, yields continuity of function and normal gradient.  

•

 

Smaller problems are better conditioned.

•

 

Non overlapping methods yield higher continuity.

•

 

Parallelization demonstrated by Ingber et al. for RBFs in 3D.



MQ shape is controlled by either cj
2 or 

exponent, β

•
 

φj

 

should be “flat”
 

near the data center, 
xj

 

. 
•

 
Recommend using ½

 
integers β

 
=3/2, 

5/2, or 7/2;  one can obtain analytic 
integrals for φj

 

.

•
 
Increasing cj

2 makes φj

 

“flatter”.



Plots of 3 different MQ RBFs



FEM relies on preconditioners for large 
scale simulations. 

•
 

Ill-conditioning can exist for RBFs PDE 
methods.

•
 

Ling-Kansa published 3 papers with 
approximate cardinal preconditioners 
reducing the condition numbers by O(106)



H-scheme loss of accuracy at boundaries

•
 
There are several reasons for loss of 
accuracy:

1.
 

Differentiation reduces convergence rates.

2.
 

Specification of Dirichlet, Neumann, and ∇2

 operators operate on different scales.



The c-scheme: advantages and 
disadvantages

•
 

The c-scheme is very computationally 
efficient

•
 

Unlike low order methods, the C∞

 
requires 

100 –
 

1000 less resolution

•
 

The disadvantage is the equation system 
becomes rapidly poorly-conditioned.



Improved truncated-SVD for large cj

•
 

Volokh-Vilnay (2000) showed that the 
truncated SVD behaves poorly because the 
small singular values are discarded.

•
 

They project the right and left matrices 
associated with small singular values into the 
null space to construct a well-behaved 
system.



Test on notorious Hilbert matrices with
 IT-SVD based upon Volokh-Vilnay

m Norm(A*A-1

 
–I) Cond(A)

10 4.697 e-5 1.603e+13
14 7.24101e-4 4.332e+17 
20 21.8273e-4 1.172e+18 
24 64.4935e-4 3.785e+18 
28 69.0682e-4 4.547e+18 



Neumann Boundary Conditions and loss 
of Accuracy at the boundary

All numerical methods loose accuracy when 
derivatives are approximated.

MQ’s rate of convergence is O( λμ−|m|

 
),  where μ

 = h/cj

 

and m
 

is the order of spatial 
differentiation.

Remedy: Increase μ
 

so μ
 

>>|m|.



Solid Mechanics problem

•
 

ux

 

= (-P/6EI) (y-D/2)[(2+ν)y(y-D)]  ;
•

 
uy

 

= (PνL/2EI)(y-D/2)2

 

{x=0, 0≤
 

y ≤
 

D}  ∂Ω1

•
 

{x=L, 0≤
 

y ≤
 

D}   tx
 

= 0,  ty
 

= (Py/2I)(y-D) ∂Ω2

•
 

{ 0 < x < D, y = 0, D}  tx
 

=0,  ty
 

= 0     ∂Ω2

 

,4
•

 
E = 1000,  ν

 
=1/3, L =12, D = 4,  I= moment of 

inertia, P = applied force

•
 

See Timoshenko and Goodier (1970). 





RMS errors with different solvers
Dirichlet B.C.Neumann B.C.Boundary 

Type

IT-

 SVDSVDGEIT-

 SVDSVDGESolver 
Method

5.07E-68.38E-51.83E-45.82E-51.47E-21.48E-2ux

5.35E-71.25E-50.23E-43.35E-51.07E-21.27E-2uy

3.18E-59.13E-41.82E-38.38E-54.24E-24.34E-2σxx

3.95E-41.03E-21.85E-28.82E-54.07E-23.78E-2σyy



Dependency of L2

 

errors on c (PM=IT-
 SVD)



Shear stress at section x =L/2 of the 
beam with Neumann BC and PM=ITSVD



Comments on Boundary condition 
implementation and convergence

•
 

Just using a equi-distributed set of data 
centers is not sufficient for accurate 
representation of Neumann BCs

•
 

Specifying -k∂T/∂n=g can be inaccurate if 
centers inside and outside ∂Ω

 
are too 

widely separated



H-scheme-
 

PDE exist everywhere in ℜd, extend 
the domain outside of boundaries

+ boundary points;  * PDE points

+
* *

*
*

*

*

*

*

*

+
 

+

+ +

++



Neumann conditions: Good accuracy with 
IT-SVD scheme and large c2

j

•

 

Figure 4. Error distribution in stress field scattered data interpolation, 
(a) adaptive mesh refinement; 

•

 

(b) Adaptive shape parameter increment



Huang et al, EABE vol 31,pp614-624 
(2007)

•
 

They compared double & quadruple precision 
for the c-

 
and h-schemes.

•
 

For a fixed c & h, tCPU
quad

 

=40tCPU
double

•
 

tCPU
quad

 

(c-scheme) = 1/565tCPU
double

 

(h-scheme ).

•
 

High accuracy & efficiency achieved with c-scheme.



Accuracy of MQ-RBFs vs
 

FEM/FDM

•
 

The accuracy of MQ-RBFs is impossible to 
match by FEM or FDM.

•
 

Huang, Lee, & Cheng (2007) solved a 
Poisson equation with an accuracy of the 
order 10-16

 
using 400 data centers.



FEM/FDM vs
 

MQ-RBF example from 
Huang, Lee, & Cheng (2007)

•
 

Assume that in an initial mesh, FEM/FDM can 
solve to an accuracy of 1%.

•
 

Using a quadratic element or central 
difference, the error estimate is h2.

•
 

To reach an accuracy of 10-16, h needs to be 
refined 107

 
fold



FEM/FDM vs
 

MQ-RBF example from 
Huang, Lee, & Cheng (2007)

•
 

In a 3D problem, this means 1021

 
fold more 

degrees of freedom

•
 

The full matrix is of the size 1042

•
 

The effort of solution could be 1063

 
fold

•
 

If the original CPU is 0.01 sec, this requires 
1054

 
years

•
 

The age of universe is 1.5 x 1010

 
years



Variable cj
 

-Fornberg & Zeuv (2007)

•
 

They chose εj

 

=1/cj

 

= 1/cave

 

dj, where dj is the 
nearest neighbor distance at xj

 

.



Implementation recommendations for 
RBF PDEs MQ shape parameters

Consider the MQ RBF
ϕk

 

(x)=[ 1+ (x
 

–
 

ξk )2/ck
2]β

 
(β ≥ -1/2) (MQ)

Wertz, Kansa, Ling (2005) show:
1.

 
Let β ≥ 5/2; asysmpotically MQ is a high 
order polyharmonic spline

2.
 

Let (ck
2)∂Ω

 

≥
 

200(ck
2)Ω\∂Ω



Fedoseyev et al.(2002)

•
 

By extending the PDE domain to be 
slightly outside of the boundaries, they 
observed exponential convergence for 
2D elliptic PDEs.



Fornberg & Zuev, Comp.Math.Appl. (2007) Variable εj

 
=1/cj

 

reduces cond.number, improves convergence



Summary of Wertz study

•
 

Using  β
 

> ½
 

produces more rapid 
convergence.

•
 

Boundary conditions make the PDE unique 
(assuming well posedness), hence (cj

2)∂Ω
 

>> 
(cj

2)Ω\∂Ω

•
 

Permitting the (cj
2) on both the ∂Ω

 
and Ω\∂Ω

 to oscillate reduces RMS errors more, 
perhaps producing better conditioning.



Front tracking is simple with meshless 
RBFs

•
 

No complicated mesh cell divisions.

•
 

No extremely fine time steps using above 
method.

•
 

No need for artificial surface tension or
•

 
viscosity.



Sethian’s test of cosine front

•
 

At t=0, flame is a cosine front, separating 
burnt and unburnt gases.

•
 

This front should develop a sharp cusps in 
the direction of the normal velocity.

•
 

Conversely, a front should flatten when it 
faces in the opposite direction.

•
 

The flame front moves by the jump conditions 
in the local normal direction.



Front tracking is very hard with meshes

•
 

Front capturing requires unphysical 
viscosity.

•
 

Complicated problems of mesh unions 
and divisions as front moves in time.

•
 

The tangential front is usually not a 
spline, artificial surface tension and 
viscosity are required for stability.



In 1990, Kansa showed the best 
performance with variable cj

2

 
,not a constant. 
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Turbulent flame propagation studies

•
 

Traditional FDM required 14 hrs on a 
parallel computer to reach the goal time 
of 1.

•
 

Time required for the RBF method to 
reach the goal time of 1 was 23 
seconds on a PC.
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•
 

2D Vortical turbulent combustion
–

 
2D infinitely periodic turbulent flame.

–
 

PDEs are hyperbolic, use exact time integration 
scheme, EABE vol.31 577–585 (2007). 

–
 

Flame front is a discontinuous curve at which the 
flame speed is  normal

 
to flame front.

–
 

Two separate subdomains used: burnt and 
unburnt gases, jump conditions for flame 
propagation.
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Summary

•
 

Use spatial refinement sparingly.
•

 
The variable c2

j

 

= |U|
 

/|∇U|
 

is more stable, accurate 
and better conditioned.

•
 

The IT-SVD projects small singular values into the 
null space.

•
 

Need to investigate Huang et al.’s claim that 
extended precision is indeed cost-effective in 
minimizing total CPU time.

•
 

Hybrid combinations of domain decomposition, 
preconditioning, variable c’s, IT-SVD, & extended 
precision need to be examined.



Efficiency of meshless MQ-RBFs versus 
traditional, long established FDM,FEM, & 
FVM
•

 
CPU time (FDM,FEM, FVM)/discretization pt << 
CPU time(RBFs)/discretization pt

•
 

END OF STORY –
 

NO

•
 

BOTTOM LINE –
 

total CPU time to solve a PDE 
problem,  tCPU

 

(RBF) <<tCPU

 

(FEM,FDM,FVM).

•
 

Exponential convergence wins!
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