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"If you had access to a petascale computing system, what would you do with it?"

"If you had access to a petascale computing system, how would you use it?"

"If you had access to a petascale computing system, what problem would you solve?"



Naïve assumption:  direct numerical solution of the Navier-
Stokes equations on unprecedentedly fine grids will be possible
using these platforms

Greatest challenge:  Data volumes

What problem?

Turbulence:  the “perfect” problem for petascale

Formulate a statistical description of small-scale properties
which is sensitive to large-scale driving and provides a model
for transport

Statistics of Turbulent Structures



The postdoc class problem
(sustained effort on 1/10 of the machine):

Estimated Sustained TFLOPs at NCAR
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ICESS (IBM P5+/P6)

IBM p5-575/HPS
(bluevista)

IBM Opteron/Linux
(pegasus)

IBM Opteron/Linux
(lightning)

IBM POWER4
Federation (thunder)

IBM POWER4 Colony
(bluesky)

IBM POWER4
(bluedawn)

SGI Origin3800/128

IBM POWER3
(blackforest)

IBM POWER3
(babyblue)

ARCS Phase 4

bluesky
blackforest

ARCS Phase 3

ARCS Phase 2

ARCS Phase 1

Linuxblackforest
(WH-1)

blackforest
(WH-2/NH-2)

bluevista

ICESS

POWER5+

POWER6

5042 x 2048 (483 time steps)
325,000 pe hrs
(112/1160 375MHz pe,
  4 - 16 months)
10TB data       8043

12602 x 4096
460,000 pe hrs
(160/1600 1.9GHz pe,
  4 - 16 months)
125TB data             186631.5 Tflops sustained

0.12 Tflops sustained

16502 x 8192
930,000 pe hrs
(320/3200 4.0GHz pe,
 4 - 16 months)
430TB data             28143

5 Tflops sustained

1 Pflop sustained

82002 x 65536
145,000,000 pe hrs
(50,000/500,000 6.0GHz pe,
 4 - 16 months)
85000TB data   163943

85 petabytes



IDL era (2D slice and dice):  

23plumevideo.mpg



VAPOR era
(3D multi-resolution and
sub-domain selection for
interactive analysis):

5042 x 2048
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THE HOPELESS SITUATION THEOREM:
Doubling the resources available to a batch execution will increasingly 
overload a corresponding doubling of the resources available for 
interactive analysis and visualization.

A posteriori analysis and visualization of the data volumes 
can not keep up with batch capabilities:

• Not all technologies advance at the
same rate

• Multi/insanely-large-number
processor simulation
vs. single/dual/quad/small-number
processor analysis and visualization

Data decimation BEFORE batch output will be essential.

163843  simulation
will require
decimation by
factors of about 323

for interactivity



Forecast models – reduced output on reduced grid:

NCAR's Advanced Research version of the 
Weather Research and Forecasting model (WRF)



BlueGene/L with a sustained 
speed of 280.6 teraFLOPS

Lawrence Livermore 
National Laboratory (2006)

30723
Resolved Rayleigh-Taylor instability

Statistics – reduction in dimensionality:



Structures in turbulent flows:

Compressible turbulence – Porter, Woodward, Winkler & Hodson

Viscous (yellow)
and thermal (blue)
dissipation in
stratified shear
turbulence –
Werne & Fritts



La Porta et al. 2001, Nature, 409, 1017

Lagrangian statistics:



Mordant, N., Lévèque, E., & Pinton, J.-F.
Phys Fluids 2006

• Tank radius 10cm (9 liter volume) filled with water
• Counter rotating disks (9.5cm diameter, 18cm separation)
• 250µm diameter 1.06 g/cm3 tracer particles (smaller than Taylor microscale)
• Beam width at center of volume (no mean flow) 10 cm 
  (larger than the integral scale -- sample full range of Lagrangian motions)
• Total number of tracers small (less than two in sample volume at one time)



Mordant, N., Lévèque, E., & Pinton, J.-F.
Phys Fluids 2006

Δτv(t) = v(t+τ) -v(t)
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Point vortex simulations:  
u
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6.25 new vortex sites per unit area per unit lifetime
2.56 new vortex sites in domain per time step
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• Like sign vortices
  orbit
• Oppositely signed
   vortices translate
• Scattering leads to
  preferential merger
  of oppositely signed
  pairs



Particle trajectories in point – vortex model:



Velocity and acceleration distributions in point – vortex model:



Temporal increment τ

t in units of 1000 time steps

Δτv(t) = v(t+τ) -v(t)
! = 1

! = 4

! = 16

! = 64

! = 256

! = 1024

! = 4096



Bivariate transformation of random variables:

Let x and y be independent random variables with probability densities P(x) and P(y)
and joint probability density P

xy
(x, y) = P(x)P(y)

Let                    and                     be functions of the random variables with inverse
functions 

u = f (x, y) v = g(x, y)

x = h
1
(u,v) and y = h

2
(u,v)

Then the joint probability density of u and v is Puv (u,v) = Pxy (h1,h2 )
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uv

(u,v)!  dv and P(v) = P
uv

(u,v)!  du

Example:
Consider two Gaussianly distributed independent random variables each with a
Mean value of zero and variance equal to one:

P
xy
(x, y) = P(x)P(y) =
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To derive the probability density of their product, let               and
with inverses 

u = xy v = y

x = u / v  and  y = v



The joint probability density of u and v is then 

P
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and integrating over “dummy” function v yields P(u) =
1

!
K
0

u
2( )

K0 is the lowest order modified Bessel 
function of the second kind 
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logP(u)

Monte Carlo vs. analytic probability
density for the Gaussian product N1N2

u = xy



Velocity around a single point – vortex:
When radial distance to vortex is 
sampled randomly in the plane:

P r( )! r

Bivariate transformation of random variables:

x = sin! y = r

u = x / y v = sin
!1
x

P x( ) =
1

cos!
=

1

cos(sin
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P y( ) = r = y

P
xy
x, y( ) = P(x)P(y)
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Velocity in field of randomly 
placed point – vortices:

P r( ) = 2!nre"!nr
2

• nearest neighbor distance r
• n is vortex field number density

Keeping only nearest 
neighbor contribution:
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Velocity in field of randomly 
placed point – vortices of random amplitudes:

P r( ) = 2!nre"!nr
2 nearest neighbor

as before
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where K and E are the complete elliptic integrals of the first and second kind

N = 10

n = 2.44 !10
"3

N = 1000

n = 2.44 !10
"1

N = 100

n = 2.44 !10
"2

U
0
 not constant

Gaussianly 
distributed
amplitudes



Two important physical contributions to the velocity difference:

Creation of new 
vortices in domain:

Advection over 
temporal increment τ
by nearest neighbor:
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N = 10

n = 2.44 !10
"3

N = 1000

n = 2.44 !10
"1

N = 100

n = 2.44 !10
"2

Velocity difference in field of randomly 
placed point – vortices

Velocity in field of randomly 
placed point – vortices of random amplitudes
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Recently observed in lab.



Implications and questions:
•  The processes that dominate Lagrangian turbulent transport are
    dominated by nearest neighbor effects and are thus two-dimensional
    in the plane perpendicular to the closest vortex filament

•  As the temporal increment τ → 0 the velocity difference
    probability density function approaches the new vortex nearest neighbor
    velocity pdf, because changes in the flow field resulting from new vortex
    creation overwhelm contributions from advection by existing filaments

NEW vorticity changes do not have to be big (pdf normalized by rms)

•  Lagrangian tracers randomly sample a random collection of vortices

• Random stirring mimics effects of vortex stretching

•  As τ → 0, are velocity difference pdfs in driven turbulence significantly
    different from those in decaying turbulence?

• As τ → 0, are Eulerian and Lagrangian statistics different?  If so, why?
   If not, why are we working so hard to measure Lagrangian motion at small τ?



e.g. petascale Plane Couette flow
simulation:
• large domain
• statistically steady state
• Output:

• position
• amplitude
• orientation
Of vortex filaments in domain

Assemble distributions of these quantities as function of
imposed velocity and distance from boundary

Compute scalar and vector transport based on these
distributions – develop a statistical mechanics of vortex
structures on which to base transport coefficients

Information rich data decimation based on
turbulent structures: 



•  Tera-scale computing offers sufficient data for
robust point-wise statistics of the flow – and we can
just handle the data volumes necessary to extract
those

•  Peta-scale computing will offer sufficient resources
to develop a statistics of structures and a transport
theory based on the statistical mechanics of these


