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The Motivation

m Turbulence is the main cause of
In-flight injuries — for both
passengers and flight
attendants.

m After a severe encounter, the
airline has to perform a
structural check on the aircraft.

Pilots will try to re-route around
an area If there have been
reports of moderate or greater
turbulence.

Bottom-line: Turbulence is a safety
problem as well as having a
large financial impact on the
airlines.
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DC-8 Cargo Aircraft Damaged Due to Extreme
Turbulence
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The Turbulence Problem for Aviation
(Grossly Oversimplified)

urbu les arg S S

than 3000 meters (approximately) produce aircraft
motions which can be difficult -- or impossible -- to
control.

With small-amplitude eddies, these induced motions
may be simply uncomfortable to passengers. Large
amplitude eddies, on the other hand, can result in
passenger injuries or even structural damage to the
aircraft.”




Turbulence Scales of Motion
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Response Function for
Transport Aircraft
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The Need For Turbulence Measurements

m [actical;

= Real time alerts of eminent encounter (< 1 min.)
Turn seat belt sign on.
Get passengers seated and in seatbelts.
Get service carts stowed and flight attendants seated.

= Real time alerts/nowcast of impending encounter (< 15
min.)
All of the above.
Change altitude.
Change flight path.




The Need For Turbulence Measurements

m Strategic:

= Nowcast/Forecast of potential encounter (en route)
Increase pilot awareness.
Discussions with airline Dispatch personnel.
Discussions with en route air traffic personnel.
Consider altitude/course change.

= Forecast of potential encounter (pre-flight)
Pre-flight awareness for pilot/Dispatch.
Consider re-routing flight path.




In situ Turbulence Measurement and
Reporting System

Goal: To augment/replace
subjective PIREPs with
objective and precise

turbu |enCe - . turbulence data crosslink > = - -:
measurements. ‘-”
F e at ures: pméﬁu.ﬁ'ﬂﬁﬁ Ejl;rguileor::ﬁ link

| Atm OSphenC turbU|ence turbulence product generation
metric: eddy dissipation
rate (EDR).

m EDR can be scaled into
aircraft turbulence
response metric (RMS-g).

m Adopted as ICAO
Standard

FAA/NCAR In situ turbulence measurement and reporting system




Increase in Spatial/temporal Coverage: UAL EDR
Reports Compared to pireps

1.3 million EDR reports/month from
—1060-orsoaitrcraft=compared-to 55k

pireps from all aircraft.

EXPERIMENTAL PRODUCT
00:00 UTG 08 Apr - 00:00 UTC 03 Apr 2004

Valid 12:00 UTC Mon 08 Apr 2004
@ nul A light —A_ moderate
=77 smooth—-light A light—-mod A mod—severe

Note: For pireps, ime of pirep is in upper left comer in the format HHMM (GMT).
Ajftitude is in lower left comer in 100's of feet




In situ measurement and reporting system

= Implemented on ~ 200 UAL
aircraft since 2000

m Implementation status

SWA: Fleet implementation
on ~ 280 737-700s in CY08

DAL: Fleet implementation
on ~ 120 737-800s in CY08

NWA: Discussions ongoing
for implementation on ~ 140

Airbus 319/320s and 56 787s il IR Y e
UAL: 757 ACMS replacement Website: UAL 757 edr flight

AAL: Discussions ongoing  tracks overlaid on GTG
forecasting product




NASA Airborne Radar Detection of Turbulence Program
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Event 232-10 (19:12:02, 19:12:13, 19:12:25)

Flight 232-10, 04-30-2002 19:12:02, Tilt: -4.0
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vent 232-10 (reflectivities at 19:12:25)
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Event 232-10 (19:12:37, 19:12:49, 19:13:01)
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Flight Track for NASA flight R232
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NEXRAD In-cloud turbulence detection
algorithm (NTDA)
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Case Study: Severe turbulence
encounter at FL 310 over NE Arkansas

m Vertical acceleration from -0.9 g to +2.3 g in about 3 seconds
m 43 minor injuries, two serious; cabin damage
m 8 min. warning could have reduced/eliminated injuries
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NTDA uplink demonstration

Uses data from 83 NEXRADSs,
covering eastern US

3-D EDR mosaic updated
every 5 minutes, displayed via
Experimental ADDS

ACARS text uplinks to UAL
cockpits for flights registered

on NCAR webpage
Pilot feedback via webpage

September press release
garnered significant attention

>
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Diagnosis of convectively-induced turbulence (DCIT)

Near-storm environment and
turbulence diagnostics from RUC

Storm location, morphology, and
observations from satellite, radar
(dBZ and EDR), and lightning

Associations with in situ EDR
reports used to tune an empirical
model (random forest)

DCIT provides tactical 3-D gridded
EDR, Prob MoG and Prob SoG
assessments

= forusein GTGN

DCIT real-time prototype running
iIn RAL since August

DCIT: Prob MoG (uncalibrated)
27 June 2007 2300 UTC, FL 300




Turbulence Detection via Airborne GPS
Recelvers: The Concept

m Airborne receivers would be a platform of
opportunity to collect occultations in the
cruise regime of commercial aviation, e.g.,
20-40 kft. AGL.

m The turbulence measurements from these
occultations would probably not be used as
stand-alone information, but integrated Iinto
operational nowcast/forecast products.




Geometry of the Problem
S

&
‘-\e\?
1), is the distance, along the
LOS, from the satellite to the

center of the turbulence
patch.

R is the distance from the
satellite to the aircraft
receiver along LOS.

An s the width of the
turbulence patch along LOS.

R —mn, is the distance from
the aircraft to the turbulence
patch.




Aircraft Flight Track with GPS Occultations

UAL1420 31-Aug-200z 20:47.00-31-Aug-2002 23:58:00




Parameter Estimation

o

K: 33000.0 rad km')
V: 0.2 (kms')

R: 2.5986+04 (km)
A, 3.3006-02

ata ; 2.5888+04

1000
"o realizations

Maximum Likelihood (ML) estimation of intensity with fixed
R —n, =100 km while varying L,. Horizontal and vertical lines are
simulated (i.e., “true”) values.




Parameter Estimation (cont’d)

1000
* . realizations

ML estimation of intensity with fixed L, =3km
while varying R—n, .




T T T
I Estimate over all Freq.
Il Estimate over High Freq. Data
True Value Cﬁ delta eta

T T T
I Estimate over all Freq.
I Estimate over High Freq. Data
True Value Cﬁ delta eta

e Initial ML estimation of intensity (left) and using an estimate
of 7, (right).

 Solid vertical line iIs true value.

* Blue values are from using the high-frequency portion of the
spectrum, red values use all the spectral points.

 Simulated R —7, valueis 100 km, “guess” is 10 km -i.e.,
an underestimate — hence the overestimate of the intensity.




Detection of Turbulence Using an Airborne
Forward-Looking IR Sensor

m Possible Approach:

= Derive equation that relates the statistics of the atmospheric
turbulence (e.g., temperature field) to those of the sensor
measurables.

= Consider the irradiance (H) at a given frequency, measured at the
aircraft (x=0):

H (0) = fWB(T(X))f (x)dx

Where W; is the Planck function, L is the path length over which the
measurement iIs made, and f is a combined function of the non-
turbulent atmosphere and the response characteristics of the
sensor.




Detection of Turbulence Using an Airborne
Forward-Looking IR Sensor

m Next, consider the same measurement
when the aircraft has moved a distance p:

H(p)= | Wy (T (x))f (x)dx

L+p

m Assuming that the Planck function is linear
In the temperature, the correlation function
of the irradiances can be computed:

(HOH ()= K[ [ (TEIT (X)) f () (x)dlxx

LL+p




Detection of Turbulence Using an Airborne
Forward-Looking IR Sensor

m Assuming that standard turbulence theory applies,

(TT(x))=C{g(X'~X) | where C? is the intensity parameter
of the turbulent temperature field. In principle the turbulence
Intensity parameter is given by:

2 (H(0)H (p))
C? =

0 p
Kj j g(x'—x) f (x) f (x")dxdx’

LL+p




Detection of Turbulence Using an Airborne
Forward-Looking IR Sensor

m |Ssues:

= Aircraft respond to vertical wind motions, not
temperature fluctuations - the relationship
between the two is not well-understood.

= To what spatial scales are these IR devices
sensitive?




Turbulence Forecast Product: Graphical
Turbulence Guidance (GTG)

~_m Based on RUC NWP forecasts

m Uses a combination of turbulence diagnostics,
merged and weighted according to current
performance (pireps, EDR)

m Current work areas:

Probabilistic forecasts of moderate-or-greater (MOG)
turbulence

Optimal use of in situ reports

= Output probability of MOG,SOG > some EDR
threshold

= Improve forecasts of severe turbulence
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GTG improvement using in situ data over pireps
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Turbulence Nowecasting System (GTG-N)
Overview

= Motivation:

= GTG updates are tied to the model runs (once per
hour).

= Turbulence can vary dramatically over small
space/time intervals.

= We will have more observational data and rapid-
update diagnostic products in the near future.

= This implies the need for a rapid-update (e.g.,
every 15 min) gridded turbulence product, GTG-N




GTG-N Overview

m Approach (nominal):
= Start with GTG grid.

= Incorporate:
DCIT/NTDA
In situ Reports
Pireps

Lightning data
Satellite data.

Other...

= Compute confidences for all inputs (diagnostic and
measurements).

= Use an intelligent merging procedure to create a unified
turbulence nowcast gridded product.




Turbulence Nowcasting System: GTG-N

Merges all current -
turbulence e
observations with
forecast grids.

RMS-q)
B \

————_ TR >

—~ GTG forecast
In situ EDR / grids (EDR)
reports, PIREPs,

4D data cube

\ updated -+ Convective

everv 15 min turbulence
y diagnostic

(EDR)

@/ Wx satellite

Radar (NTDA) turbulence grids (EDR) data



GTG-N Example

GTG 1 hr forecast

gtg 05 1

orecast.200 gtg _nowcast.200 70823.i0100.with obs.36000
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Summary

m Turbulence measurements are critical in providing

accurate and operationally useful tactical and strategic
Information to users.

In situ turbulence measurements are now available and
used operationally — more to come.

A number of proof-of-concept sensor demonstrations

have occurred, with positive results.

Other technologies in development/evaluation:
= Airborne lidar
= Satellite

= GPS/Iridium
= Airborne IR
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