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Physics of air-surface interactions and //A

coupling to ocean-ice/atmosphere BL e

 Emphasize surface fluxes

e Similarity Scaling

* Bulk Flux Parameterizations

o Surface/subsurface processes
 Improve Observing Technologies
* Flux climatologies

Aspects:

Model lower BC (PBL, Meso, NWP, GCM)
*Ocean budgets (stress, heat, waves, sea-ice)
Applications: | *Carbon budgets

*Pollution deposition (particle, ozone)

*Cloud microphysics (aerosol source, DMS)
*Atmos Propagation (Cn?, ducting, extinction)
eHurricane intensity
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Flux Definitions CIRES

Sensible Heat : H_ = p,c, W'T"

Latent Heat - H, = p, L W'¢q'

- 1y, 1r vy, 13
Stress 1t =p,Wu i +p wu,j

Rain Heat: H ,=c, P(T,~T,,,)

Buoydir . F,=H /p,c, +0.61T H /p,L,
BuoyWater . F, =—-agH ./ p,c,, +Pg(E—P)

Gas Exchange: F. . =w'r,'

Particle Exchange: F, = w'n(r)'=w, n(r)+w,'n(r)’
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Present Status of Surface Flux //A

Parameterizations CIRES

uuuuu

Turbulent Fluxes: Bulk Parameterization

Mean correlation of turbulent variables represented in
terms of mean flow variables — wind speed, surface-
to-air variable difference

Met Flux :w'x'=CU(X, - X,)=C.UAX
Gas Flux : w'x' = k.a AX a = sol.
PartiCleS : Fdeposition = _Vd (I”)% )

Fpirce = F ([ uhitecap » U » U, wave breaking, slope)

S

“Observing the Turbulent Atmosphere: Sampling Strategies, Technology and Applications”, May 28-30, 2008, Boulder CO



Visible & UV /A

Radiation C | R E S
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Sensing Technologies CIRES
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 Near-surface In situ
— Sonic anemometer/thermometer
— IR fast hygrometer, fast CO2
— Chemilum. Fast ozone, DMS
— High quality mean T, q, Ts
— Eppley solar/IR radiometers
— Surface waves

 Boundary Layer/column
— Ceilometer
— Wind profiling radar
— Rawindsonde
— Microwave radiometer
— Doppler cloud radar
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Rugged, High Speed, Accurate Sensors A

for Eddy Covariance Measurements CIRES
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Unbelievable Number of Dirt Effects

* Motion corrections
e Contamination by salt, ship exhaust, sea gulls, ...
* Flow distortion (Ship, tower, other sensors)

e Sensor separation, time delays, decorrelation, frequency
response, path averaging,...

e Surface boundary conditions (currents, ocean/snow
gradients)

« Extreme cold, icing, frost formation, fog/rain impact
* Poor signal to noise, weak stratified turbulence

e Sensor-variable crosstalk (Webb, motion, chemical)
 Atrtificial (self-) correlation
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X 5 Wind speed (m/sec) 15
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Sonic anemometer %

Example of Instrumented Mast «— 4R

* ..

Fast sensor platform
" -

- Temp/RH sens T]
o __ -~ |
Optical range gauge

I ——

008, Boulder CO



TMOSs,
Ge1a e
e e

Time series of w measured, Shlp s vertical motion and final w' . GasExIIl 2008, JD76, hour

Ship Motion Corrections
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Sample Dirt/Crosstalk Effects CIRES
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Sample Tube Filter Effects CIRES
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Historical perspective on turbulent fluxes:

N

Typical moisture transfer coefficients
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Fic. 3. Humidity coefficients (Cz) for the ten selected schemes under neutral or slightly
unstable conditions as a function of the wind speed (o) at an altitude of 10 m. Scheme
acronyms are given in Table 1.
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CIRES

COARE MODEL HISTORY

1996 Bulk Meteorological fluxes (k,=u*C,)
— Update 2003 (8000 eddy covariance obs)
— Oceanic cool skin module — molecular sublayer

e« 2000 CO2
e 2004 DMS o
e 2006 Ozone |
0.15
_ 0.1
l-‘><0.05
0]
-0.05
0
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Results from 13 Cruises in 8 years CIRES
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Air-Sea transfer coefficients as a function of wind speed: latent heat flux (upper panel) and
momentum flux (lower panel). The red line is the COARE algorithm version 3.0; the circles are
the average of direct flux measurements from 12 ETL cruises (1990-1999); the dashed line the
original NCEP model.
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Observations Normalized by Model CIRES
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Cruise Tracks P\

9o

I:ll:l

9°5

18°5

27°5

1 i i i
9™y 90™y Ba™y 7MY 7MY BETWY

Leg 1: from July 27 to August 18 October 13 to October 25

Leg 2: from August 21 to September 10
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Deposition velocity versus Friction velocity 1R ES

iM ENviROaS DMTAL SO0 NCES

TexAQS 2006 STRATUS 2006

F_?zqne deFI’OSit_iO” v;l;)city.gexngs%b Ozone deposition velocity. Stratus06
iitering on lag time (4-7s) and st E H H
001 B g onlag f ) (2ppb) < 10° Filtering on std (<2ppb)
° s M rJ o o o Gulf 4 T T T T
o .‘l !: RIS ® o000 y = 0.00151*x + 0.000252 *
0.008 | . o.°
ORI TR e Land y = 0.000763* + 0.000101 *
0.006 3t ° 7
[ ]

. 0.004 —_
{ Y
E E
> 0.002 >
= =
° o
Q o
: >
g s
= 0002 =
o [%)]
o (@]
: 5

0,004 2

-0.006

-0.008 . ]

[ ]
-0.01 [ ! ! ! ! ! ! -2 ! ! I I I ! !
0 0.05 01 0.15 0.2 0.25 03 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Friction velocity (m/s) Friction velocity (m/s)

“Observing the Turbulent Atmosphere: Sampling Strategies, Technology and Applications”, May 28-30, 2008, Boulder CO



N

GASEX-Il, GASEX-IIl, and DMS Field Programs: CIRES
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_ _ CIRES
<& Budget of the Arctic Ocean Experiment (SHEBA) o Bevremerre Srarees

@" Measurement over Sea Ice surface Heat P\

e The main SHEBA ice camp was deployed on the ice in the vicinity of the Canadian Coast
Guard ice breaker Des Groseilliers, which was frozen into the Arctic ice pack north of Alaska
from October 1997 to October 1998.

e During this period, the ice breaker drifted more than 1400 km in the Beaufort and Chukchi
Seas, with coordinates varying from approximately 74° N and 144° W to 81° N and 166° W.

Sheba Ice Station
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The SHEBA ice station drift from October 2,
1997 until October 9, 1998.

The SHEBA camp The Des Groseilliers and C-130
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ASFG Instrumentation CIRES
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e The Atmospheric Surface Flux Group (ASFG) deployed a 20-m main micrometeorological tower,
two short masts, and several other instruments on the surface located 280 — 350 m from the Des
Groseilliers at the far edge of the main ice camp.

e Turbulent and mean meteorological data were collected at five levels, nominally 2.2, 3.2, 5.1, 8.9,
and 18.2 m (or 14 m during most of the winter).

e Each level had a Vaisala HMP-235 temperature/relative humidity probe (T/RH) and identical ATI
three-axis sonic anemometers/thermometers.

e An Ophir fast infrared hygrometer was mounted on a 3-m boom at an intermediate level just
below level 4 (8.1 m above ice).
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Typical Turbulent Spectra

for weakly and moderate stable (left) and very stable (right) conditions

N

CIRES

COOPIRATHE IMSTITUTE PO RESEARCH
iM ENviROaS DMTAL SO0 NCES

10 T T T a E E
3 a ;
< 107 { < 3
n E (2] 3
[aV] [aV]
£ £
U): 10_3 i 1 (/)3 ]
& 3 & Lewel 2 3
—eo— Lewel 3
10'4 NP | sl al 10'5 L?\EES. 2l N | al "
10° 10 10" 10° 10" 10° 10 10" 10° 10"
Frequency, f (Hz) Frequency, f (Hz)
10° : .
Lewvel 1 b ] b
S <
g g
s 107} { = 3
n ] o E
& &
10'4 N ol sl s 104 L?VEI.S. ol | al s
10° 10 10™ 10° 10" 10° 10 10™ 10° 10"

Frequency, f (Hz)

Typical raw spectra of (a) the longitudinal wind component and () the
sonic temperature at four levels (level 3 is missing) for weakly and
moderate stable conditions during 14 February 1998 UTC (1998 YD
45.4167). Stability parameter increases with increasing height from
0.128 to 1.893, (levels 1, 2, 4, and 5). The bulk Richardson number also
increases with increasing height from 0.0120 to 0.0734 but it is still

below its critical value 0.2.

Frequency, f (Hz)

Typical raw spectra of (a) the longitudinal wind component and
(b) the sonic temperature at four levels (level 4 is missing) for very
strong stable conditions during 21 December 1997 UTC (1997 YD
355.00). For data presented here the stability parameters at levels
2,3,and 5 are 3, 10.5, and 116.3 (sensible heat flux is missing for
level 1). The bulk Richardson numbers at four levels are Rig, =
0.0736, Rig, = 0.0839, Rig; = 0.1090, and Rigs = 0.2793
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According to the SHEBA data,
stratification and the Earth’s rotation
control the SBL over a flat rough
surface. Different SBL regimes are
described in terms of the Monin-
Obukhov stability parameter (z/L), the
Ekman number (EK) that quantifies the
influence of the Earth’s rotation, and
the bulk Richardson number (Ri;) that
determines the intensity of the
turbulence. These three non-
dimensional parameters govern four
major regimes (see Figure).

Figure shows a schematic diagram of the
SBL scaling regimes as functions of the
stability and height. Here z, = 2 m (level
1), Ek .~ 1, Ri; = 0.2. Dividing lines
between the scaling regions are sketched.
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Ekman Surface Layer CIRES
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(4:00-8:00 a.m. local time, see the legend). Markers indicate ends of
wind vectors at levels 1 to 5 (1.9, 2.7, 4.7, 8.6, and 17.7 m).
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The SHEBA Profile Functions CIRES
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e Non-dimensional velocity gradient: P, (&)= v 1+b ¢ 1310 = P sEBA
_ _ _ xKzdf a, +b,C° 50 +5¢7
- : =—— =1+t 2 =1+ =
e Non-dimensional temperature gradient: ?,(&) T Lo+l 1310 Ph sHeBA

where a,=a,=5b, =a,6/65b,=5andc, =3

e The integral form of ¢ :

3a a B x+B x*—xB_+ B? 2x—B 2-B
v =—"2(x-1)+—22|2In 2 —1In m ’"+2\/§ arctan———2= —arctan——=
o) ey S 2 B 2D |

m

e The integral form of ¢, :

b a, bc 2§ +c,—B c, —B
i SHEBA(():_Thln(Hc";wz){_?M 25, J(ln 2 e t8 e +th
h h h h h h

where x=@1+¢)" B =[1-5,)/b,]" B, =+c—4=45

e Coefficients a, and a , are determined from the asymptotic behaviour of ¢ and ¢, for £ — 0; the ratio
a, /b, and coefficient b, are derived from the asymptotic behaviour of these functions at § — . Note
thatp, - =(a, /b, ){”Pand ¢, - 1+b,=6as §— . Coefficient ¢, is derived by our visually fitting
the data.
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Turbulent Prandtl number CIRES
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Plots of the bin-averaged medians of the turbulent Prandtl number based on the local fluxes (n = 1-5) as functions of (a) z,,/L , and (b) Ri .
The dashed-dotted line in the upper panel is derived from the Beljaars and Holtslag (1991) formula, and the dotted line is based on the Cheng
and Brutsaert (2005) parameterization. The vertical dashed line in the lower panel corresponds to the critical Richardson number, Ri; =
0.2. Individual 1-hour averaged data based on the median fluxes for the five levels are shown as background crosses.
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Another notable example of self-correlation is the suggestion that the von Karman constant, k, depends on the roughness
Reynolds number, Re,. Andreas et al. (2006) found recently that artificial correlation seems to explain the tendency for k
to decrease with increasing Re* in the atmospheric surface layer (i.e., Frenzen and Vogel, 1995a, 1995b; Oncley et al.,
1996). According to Andreas et al. (2006) the von Karmén constant is, indeed, constant at 0.38—0.39.
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The stability-corrected SHEBA and Ice Station Weddell values of the
von Karman constant are plotted against measured values of the
roughness Reynolds number. The plot also shows tendencies and

roughness Reynolds number ranges for the k values that McKeon et al.
(2004), Frenzen & Vogel (1995a), and Oncley et al. (1996) deduce.

The stability-corrected von Karman constants are plotted against
corresponding estimates of the roughness Reynolds number from
our bulk flux algorithm. The lines show the least-squares fits of the
Ice Station Weddell data, the SHEBA data, and the combined set.

“Observing the Turbulent Atmosphere: Sampling Strategies, Technology and Applications”, May 28-30, 2008, Boulder CO



o

5
s}
z
E]

)
Ce Ao

Questions ? A

CIRES

COOPIRATHE IMSTITUTE PO RESEARCH
i ENviRDaSDNTAL SCIERCES

“Observing the Turbulent Atmosphere: Sampling Strategies, Technology and Applications”, May 28-30, 2008, Boulder CO



	Theme of the Year Workshop 3 at NCAR�Geophysical Turbulent Phenomena
	Physics of air-surface interactions and coupling to ocean-ice/atmosphere BL
	Flux Definitions
	Present Status of Surface Flux Parameterizations
	Slide Number 5
	Sensing Technologies
	Rugged, High Speed, Accurate Sensors�for Eddy Covariance Measurements
	Turbulence Measurements from Ships
	Example of Instrumented Mast
	Ship Motion Corrections
	Sample Dirt/Crosstalk Effects
	Slide Number 12
	Sample Tube Filter Effects
	Historical perspective on turbulent fluxes:�Typical moisture transfer coefficients
	Slide Number 15
	COARE MODEL HISTORY
	Results from 13 Cruises in 8 years
	Observations Normalized by Model
	Slide Number 19
	Slide Number 20
	GASEX-I, GASEX-II, and DMS Field Programs:�Difference in CO2 and DMS from Solubility-Bubble Effect
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

