USING HATS DATABASES TO EVALUATE SUBFILTER-SCALE RATE EQUATIONS FOR LES

Peter P. Sullivan
National Center for Atmospheric Research

Contributions: Tom Horst, Don Lenschow, Chin-Hoh Moeng, Ned Patton, Jeff Weil
LARGE-EDDY SIMULATIONS AND OBSERVATIONS

Why LES of the PBL:
- Outdoor 4-D measurements are challenging
- Unsteady nature of the atmosphere and ocean
- Systematic investigation of the parameter space
- Advances in parallel computing

Validating/Improving LES with observations:
- Test the output
- Test the input subgrid-scale parameterizations
LES APPLICATIONS AND THE PBL

- Turbulence dynamics, stratification, entrainment
- Surface-atmosphere interactions
- Dispersion, chemistry
- Clouds
- ...

LES APPLICATIONS AND THE PBL

- Turbulence dynamics, stratification, entrainment
- Surface-atmosphere interactions
- Dispersion, chemistry
- Clouds
- ...

Stable boundary layers $z_i/L \sim 1.2$
LES APPLICATIONS AND THE PBL

- Turbulence dynamics, stratification, entrainment
- Surface-atmosphere interactions
- Dispersion, chemistry
- Clouds
- ...

Stable boundary layers \(zi/L \sim 1.2 \)

Non-equilibrium winds and waves
LES APPLICATIONS AND THE PBL

- Turbulence dynamics, stratification, entrainment
- Surface-atmosphere interactions
- Dispersion, chemistry
- Clouds
- ...

Plumes and dust-devils in a convective PBL 1024^3 simulation on 4096 cpus

Stable boundary layers $z_i/L \sim 1.2$

Non-equilibrium winds and waves
LES APPLICATIONS AND THE PBL

- Turbulence dynamics, stratification, entrainment
- Surface-atmosphere interactions
- Dispersion, chemistry
- Clouds
- ...
LES EQUATIONS FOR DRY ATMOSPHERIC PBL

Momentum
\[
\frac{D\overline{u}}{Dt} = -f \times \overline{u} - \nabla \pi + \frac{\dot{\theta}}{\theta_*} - \nabla \cdot T
\]

Scalar
\[
\frac{D\overline{b}}{Dt} = -\nabla \cdot B
\]

TKE
\[
\frac{D\overline{e}}{Dt} = -T : S + B \cdot \hat{z} - \mathcal{E} + \nabla \cdot (2\nu_t \nabla e)
\]

Subgrid-scale momentum and scalar fluxes

\[
\begin{align*}
T &= \overline{u_i u_j} - \overline{u_i} \overline{u_j} \\
B &= \overline{u_i b} - \overline{u_i} \overline{b}
\end{align*}
\]

Random variables, require a parameterization
SIMPLE (CHEAP) FILTERING
EXAMPLE ...

\[\tau_{11} = \overline{u_1 u_1} - \overline{u_1} \overline{u_1} \]
What happens to \bar{u}_i and T_{ij} as we vary the filter cutoff k_c?
MOVING BETWEEN DNS ↔ LES ↔ RANS

What happens to \bar{u}_i and T_{ij} as we vary the filter cutoff k_c?
MOVING BETWEEN DNS ↔ LES ↔ RANS

What happens to \bar{u}_i and T_{ij} as we vary the filter cutoff k_c?
What happens to \bar{u}_i and T_{ij} as we vary the filter cutoff k_c?
What happens to \bar{u}_i and T_{ij} as we vary the filter cutoff k_c?
HIGH REYNOLDS NUMBER OBSERVATIONS AND LES

- **SINGLE-POINT MEASUREMENTS**
 - Cannot be used directly to improve LES

- **MULTI-POINT MEASUREMENTS**
 - Span a range of filter widths, e.g., \(O(\text{m}) \) to \(O(100\text{m}) \)
 - Ideally 3-D, time varying “volume” of turbulence and scalars in canonical flows with shear, stratification, near boundaries, ...
HATS CONFIGURATIONS

- 36 cases
- \(-1.2 < \frac{z}{L} < 1.6\)
- \(0.15 < \frac{\Lambda_w}{\Delta f} < 15\)
OHATS FIELD CAMPAIGN

Laser altimeters
18 CSATS
275 hours "12 days of data" analyzed
CANOPY HORIZONTAL ARRAY TURBULENCE STUDY
AN EXAMPLE OF LATERAL (Y) FILTERING

δ_{yd}

$f(y, t)$

$\bar{f}(y, t)$

U

y

``2D plane of turbulence''
AN EXAMPLE OF LATERAL (Y) FILTERING
AN EXAMPLE OF LATERAL (Y) FILTERING
SFS VELOCITY VARIANCES

$3\tau_{11}/2E_{\text{sfs}}$

$3\tau_{22}/2E_{\text{sfs}}$

$3\tau_{33}/2E_{\text{sfs}}$

Λ_w/Δ_f
RATE EQUATIONS FOR SUBGRID DEVIATORIC STRESS

- What are the parent equations for the Smagorinsky model?
RATE EQUATIONS FOR SUBGRID DEViatoric STRESS

- What are the parent equations for the Smagorinsky model?

\[
\frac{D\tau_{ij}}{Dt} = \frac{2}{3} \epsilon \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \\
- \left[\tau_{ik} \frac{\partial \bar{u}_j}{\partial x_k} + \tau_{jk} \frac{\partial \bar{u}_i}{\partial x_k} - \frac{1}{3} \delta_{ij} \tau_{kl} \left(\frac{\partial \bar{u}_k}{\partial x_l} + \frac{\partial \bar{u}_l}{\partial x_k} \right) \right] \\
- \frac{1}{\rho} \left[p \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) - \bar{p} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right] \\
+ \text{transport} + \text{buoyancy production}
\]
RATE EQUATIONS FOR SUBGRID DEVIATORIC STRESS

- What are the parent equations for the Smagorinsky model?

\[
\frac{D\tau_{ij}}{Dt} = 0 = \frac{2}{3} e \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \\
- \left[\tau_{ik} \frac{\partial u_j}{\partial x_k} + \tau_{jk} \frac{\partial u_i}{\partial x_k} - \frac{1}{3} \delta_{ij} \tau_{kl} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) \right] \\
- \frac{1}{\rho} \left[\bar{p} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \bar{p} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \\
+ \text{transport} + \text{buoyancy production}
\]

\[
\frac{\tau_{ij}}{T} = \frac{2}{3} e \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

\[
T = c \frac{\Delta f}{\sqrt{e}}
\]
PRODUCTION OF SUBFILTER SCALE FLUX τ_{11}

$$- \left[\tau_{ik} \frac{\partial u_j}{\partial x_k} + \tau_{jk} \frac{\partial u_i}{\partial x_k} - \frac{1}{3} \delta_{ij} \tau_{kl} \left(\frac{\partial u_k}{\partial x_i} + \frac{\partial u_i}{\partial x_k} \right) \right]$$

$$\frac{2}{3} e \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
PRODUCTION OF SUBFILTER SCALE FLUX τ_{33}

$$- \left[\tau_{ik} \frac{\partial \bar{u}_k}{\partial x_k} + \tau_{jk} \frac{\partial \bar{u}_i}{\partial x_k} - \frac{1}{3} \delta_{ij} \tau_{kl} \left(\frac{\partial \bar{u}_k}{\partial x_l} + \frac{\partial \bar{u}_l}{\partial x_k} \right) \right]$$

$$\frac{2}{3} e \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right)$$
PRODUCTION OF SUBFILTER SCALE FLUX τ_{13}

$$- \left[\tau_{ik} \frac{\partial \bar{\mu}_j}{\partial x_k} + \tau_{jk} \frac{\partial \bar{\mu}_i}{\partial x_k} - \frac{1}{3} \delta_{ij} \tau_{kl} \left(\frac{\partial \bar{\mu}_k}{\partial x_l} + \frac{\partial \bar{\mu}_l}{\partial x_k} \right) \right]$$

$$\frac{2}{3} \epsilon \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right)$$

![Graphs showing aniso, iso, and total production of subfilter scale flux with respect to Λ_w / Δ_t.]
PRODUCTION OF SUBFILTER SCALE FLUX τ_{22}

\[-\left[\tau_{ik} \frac{\partial \tilde{u}_j}{\partial x_k} + \tau_{jk} \frac{\partial \tilde{u}_i}{\partial x_k} - \frac{1}{3} \delta_{ij} \tau_{kl} \left(\frac{\partial \tilde{u}_k}{\partial x_1} + \frac{\partial \tilde{u}_l}{\partial x_k} \right) \right] \]

\[\frac{2}{3} \varepsilon \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right) \]

Aniso (2,2)

Iso (2,2)

Λ_w / Δ_f
VARIATION OF DEVIATORIC STRESS IN LIMIT $\Lambda_w/\Delta_f \to 0$

\[
\begin{align*}
\langle \tau_{11} \rangle &= T \left(-2\langle \tau_{13} \rangle \frac{\partial U}{\partial z} + \frac{2}{3} \epsilon \right) \\
\langle \tau_{22} \rangle &= T \left(\frac{2}{3} \epsilon \right) \\
\langle \tau_{33} \rangle &= T \left(\frac{2}{3} \epsilon \right) \\
\langle \tau_{13} \rangle &= T \left(\frac{2}{3} \epsilon \frac{\partial U}{\partial z} - \langle \tau_{33} \rangle \frac{\partial U}{\partial z} \right)
\end{align*}
\]

\[
\begin{align*}
\langle \tau_{11} \rangle &= 0 \\
\langle \tau_{22} \rangle &= 0 \\
\langle \tau_{33} \rangle &= 0 \\
\langle \tau_{13} \rangle &= T \left(\frac{2}{3} \epsilon \frac{\partial U}{\partial z} \right)
\end{align*}
\]

Steady-state rate equations
Smagorinsky model
WHAT ABOUT SCALARS?
RATE EQUATIONS FOR SUBGRID SCALAR FLUX

- What are the parent equations for subgrid-scale scalar flux?

\[f_i = \overline{u_i c} - \bar{u}_i \bar{c} \]

\[\frac{Df_i}{Dt} = \frac{2}{3} \rho \frac{\partial \bar{c}}{\partial x_i} - f_j \frac{\partial \bar{u}_i}{\partial x_j} + \tau_{ij} \frac{\partial \bar{c}}{\partial x_j} \]

\[+ \frac{1}{\rho} \left(\overline{p \frac{\partial c}{\partial x_i}} - \bar{p} \frac{\partial \bar{c}}{\partial x_i} \right) \]

+ transport + buoyancy

Isotropic production

Pressure destruction

Anisotropic production
RATE EQUATIONS FOR SUBGRID SCALAR FLUX

- What are the parent equations for subgrid-scale scalar flux?

\[
\begin{align*}
 f_i &= \bar{u}_i \bar{c} - \bar{u}_i \bar{c} \\
 \frac{D f_i}{Dt} &= -\frac{2}{3} e \frac{\partial \bar{c}}{\partial x_i} \\
 &\quad - f_j \frac{\partial \bar{u}_i}{\partial x_j} + \tau_{ij} \frac{\partial \bar{c}}{\partial x_j} \\
 &\quad + \frac{1}{\rho} \left(\bar{p} \frac{\partial \bar{c}}{\partial x_i} - \bar{c} \frac{\partial \bar{c}}{\partial x_i} \right) \\
 &\quad + \text{transport} + \text{buoyancy}
\end{align*}
\]

Eddy viscosity model

\[
\begin{align*}
 f_i &= -\nu_h \frac{\partial \bar{c}}{\partial x_i} \\
 \nu_h &= \frac{2c_h \Lambda_f \sqrt{\epsilon}}{3}
\end{align*}
\]
PRODUCTION OF SUBFILTER SCALE SCALAR FLUX f_1

![Diagram showing Prod Dev (1) and Prod Iso (1) against Λ_w / Δ_t for black stable and red unstable cases.](image)
PRODUCTION OF SUBFILTER SCALE SCALAR FLUX f_3

![Graphs showing production deviation, production iso, total production vs. ratio Λ_w / Λ_f.]

- **Prod Dev (3)**: Black stable, red unstable
- **Prod Iso (3)**
- **Total Prod (3)**

Graphs with data points illustrating the relationship between production and the ratio Λ_w / Λ_f.

Λ_w / Λ_f ranges from 10^0 to 10^1. The graphs show distinct behaviors for stable (black) and unstable (red) conditions.
SUBGRID-SCALE SCALAR FLUX

Comments:

• Net horizontal scalar flux $f_1 = \langle \overline{u'c'} - \overline{u_c} \rangle \neq 0$ even horizontally homogeneous PBLs, i.e., $\frac{\partial}{\partial x} \langle C \rangle = 0$

• Tilting of vertical flux by vertical shear is important
 $f_1 \sim -f_3 \frac{\partial \overline{u}}{\partial z} T$

• No eddy viscosity model, including the “dynamic approach”, can capture anisotropic production
SUBFILTER-SCALE PRESSURE DESTRUCTION

\[
-\frac{1}{\rho} \left[p \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \bar{p} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] = -\frac{\tau_{ij} \sqrt{e}}{C_m \Delta_f}
\]

\[
+ \frac{1}{\rho} \left(p \frac{\partial c}{\partial x_i} - \bar{p} \frac{\partial \bar{c}}{\partial x_i} \right) = -\frac{f_i \sqrt{e}}{C_s \Delta_f}
\]

CHATS PRESSURE SENSOR (Steven Oncley)
AHATS (2008) “HORIZONTAL ARRAY” OF PRESSURE SENSORS
VALIDATION OF ROTTA MODEL FOR MOMENTUM AND SCALARS

Production ≈ Destruction
SUMMARY

- LES is being applied to a richer set of boundary layer flows because of advances in parallel computing

- Subgrid-scale parameterizations in LES need to be validated/improved for geophysical applications

- Multi-point measurements from the HATS field campaigns compliment our ability to compute
 - Evaluation of subgrid scale models with high Re data
 - Rate equations provide insight into SGS dynamics
 - Importance of anisotropic production for stress and scalar especially for $\Lambda_w/\Delta_f \sim O(1)$ or less
 - Data highlights the shortcomings of an eddy viscosity approach