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1 Goal:
Starting from the model:

% + esin guy = —Vp,

= pt e (0-5)

B,

7 =€ (—w + Sp),

divpup + w, =0, (1.1)

we are building a multiscale model on the following scales:

[t] = 15min
x] = 10km
[X] = 100km

It has two spatial scales and one time scale.



2 Notation

Denote the function by f(x, ex, z,t) with ex = X. Then we have:

divy(f) = divk(f) + edivx(f).

Spatial average of f is denoted by f:

f(th)ﬂhm (2L //fozt) 2L)2_/ _/ f(x,X, z,t)dzdy.
(2.2)

Time average of f is denoted by (f):

TI
(NxX,2) = lim oo [ X,z )t (2.3)
Properties of average:
a) f=f+f with f/=0

b) g is sublinear = % =0 and g’g =0;
Proof:
0. .1 8. . gl)-g(-L)
dr 1!1—{1;0 2L J, axd""” & I!l—l}go 2L e
c) fo=fg+fg;
Proof:

=(f+f)@+g)=fg+ fg+ f’?:ofg’ = fg+f'g.

As a general example consider the following Fourier representation in a small scale variahle

u(z, X, t) =T (X, t)+ | Y aj(X,t)e™* +cc. (2.4)
k>0
Here, we have
u(z, X, t) = Uo(X, t), (2.5)
and
w¥(z, X,t) = By(X,t) + 2 ) |a;(X, )| (2.6)
k;>0



In order to demonstrate this we use

kit = (), (2.7)

due to the property b) of space averaging.



3 Derivation of Model

Using the relation that:

E‘f = -—f—?—n;-V;f—!—wEf
Dt” ot” £ s oz’
d : :
= @f + divg(up f) — f divpuy + (wf). — fw.
a :
= Ef + divg(up f) + (wf). — f(divpup + w;)

= :%f + divy(un f) + (wf):

We can write the model (1.1) in the conservative form:

% + divy (up ® ug) + (wuy); + esin gpuy = —V;p,

0+ divn (o) + (), = ~ps + (0 = Su),

O +divy(wf) + (w0), = (~w+ Sp),

divpuy, + w, = 0. (3.8)



We begin with the following ansatz of scale separation:

w=ew(X,zt) +w'(x,X,z2,1t),
u, = ﬁﬁ(xr Zy t] s u;l.(x) X: 2, t)!
6=0(X,z1t)+0(xX,zt),

p=e"p(X,21)+p (%X, z21), (3.9)
and the forcing assumptions:

e 0

'S =€ {8, i+ Sp1)

Hence the model (3.8) takes the form:

P+ diva (s ® ws) + (wun); + esin gt = ~Vap,

%—*f + divy (uw) + (10%); = —p; + €10 = S, _, — B 1),

g + divy(upf) + (wh). = €' (—w + S5 _,) + S,

divaus + w, = 0. (3.10)

The reason we separate w and p in a different way (as in (3.9) is explained here. We have

divpup +w, =0

= diveuy + edivxup +w, =0

divsuy + edivxuy, +w. =0

4

= edivxup +w, = 0.

W, is of order ¢, so does w. Hence we assume w = ew(X, z,t) + w'(x, X, z,t). For the similar

reason, we separate p as € 'p(X, z,t) + p'(x, X, 2,t) to make Vjp of order 1.



The balanced law for the model (3.10) is:

9 = S:u,—l + gwl_],

w= S:?,—l:
Du,,
= T v
Dt i
divpuy, + w, = 0, (3.11)
where £

bi = ;% + (Gp +u}p) - Vi + w"%. We first take the spatial average of (3.11) and then

subtract it from (3.11) to obtain the following balanced law for the Microscale Model:

9’ — S:U,—l?
w' = ;—11
Du, o
Dt = —Vh_pf + (w’uh]z,
diveuy, + w, = 0. (3.12)



Put the ansatz (3.9) into model (3.10) and take the spatial average to obtain the mesoscale

model. Taking into account the following relations:

div(up f)

(wf)-

divk(upf) + edivx(up f)
Cdi’b‘x ('llhf) = O(()
(@f): + (w'f"): = (w'f’): + O(e)

we have the following Macroscale Model:

ot —
— = ~Vxp - (W),
Pz = 6 — Slw.—'lr

%f- = @4 5 0L,

divxay, + w, = 0. (3.13)

We have derived two coupled systems of equations for microscales (3.12) and macroscales (3.13).

In system (3.12), the first equation is often disregarded in the sense that 6’ is assumed to

vanish. This is called Weak Temperature Gradient approximation. The source term in the

second equation comes from condensation (rain) and/or sun radiation, which influence verti-

cal dynamics. The horizontal dynamics is described by the third equation. Note that, in the

third equation, we have the term (w’uj} ), which is in accordance with a fact that by definition

u’, = 0. Note that the averaged horyzontal velocity @, is taken into account here through

the material derivative. Thus we have the effect of the macroscales on the microscales. On

the other hand, the system (3.13) is a traditional linearized system of Boussinesq equations

for large scales. Note that here, the coupling of the small and large scales shows up in the

first and third equations for the horizontal and vertical system dynamics.
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