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Original Hydrostatic Balance

p=po+pz,t), 1Al < po
T=T,+T(z,1)
p=po(2) +p(z,1), Vpo(2) = pog

Additional Hydrostatic Balance

plz,t) = pi(2) +'(2,t) = —bz + p'(z,1)

p = po+pi(2) +p'(x,t) = po — bz + p'(z,1), 1| < po
5 1 bz
p(z,t) = pi(2) +p'(z,1), ——Vpi(z) = 092
g=—9%

P =Dpo(2) +pi(2) +p

To add the additional layer of hydrostatic balance, similarly apply this new
equation for p as done on page 13 of the lecture notes.
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Mass
0
a—f+n§~u+u-2p=0
0
5M+p')+(po+m+p’)2-u+u-2(,%+p1+p’):0
Dominant Balance: V - u = 0,
Momentum
Du 2
= 208 — SV - ul
Py Vp+pg+¥V {u: 3;& u__}

Du
(po+p1+0) 57 = =N(Po+ P14+ 1) + (P + P14+ 9)g + 1V

Subtract the two hydrostatic balances: — Vpo(z) + pog = 0 and — Vp; — p1g =0
.. Pl Du 1 / / 2
Divide by p, + p1 : (1 + — = -Vp + + uV-u
Y o+ p1: ( 74()“)1)1% p0+p{[_p p'g + pNul
Du 1

p 2
— ==+ —g+vVu
Dt Po Po™

Move the Momentum Equation to the Rotating Frame
Oury _ (Dug o or
at>1_<at >R+QXQR+ txr+@x<at>1

Ax(Qxr)=0

D 1 /

2l o u=——Vp + Lg+ vV
Dt Po Po~—

Write in Terms of © and N

(2o
-



Smith Lecture 1 HW Group 2: Dombroski, Enriquez, Grooms, Zhu

Thermal Energy
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Multiply by < po>
g

DO (bg\®, .k _,
Ff—(;) (u-2) = \AC)

PoCp

DO k

— — N(u-2)=—V’0

Dt PoCp

Momentum

D 1 bg\ 3
U 90w = ——Vp — (—g O + vV
Dt Po 0
D 1
ZU 005 X u+ NO = —— V' + vV
Dt Po
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Show that p% is constant in an adiabatic ideal gas: This is done using the first law of
thermodynamics d@) = di+ dW and the equation of state for an ideal gas p = pRT = %RT .

First, note that in an adiabatic gas, dQQ = 0. Also, by definition du = ¢,dT. The work
done by the gas is dW = pdV. Since V = p~!, we have dV = —%, so for an adiabatic ideal

gas, the first law becomes c,dT = p% = RT%. To show that the value £ is constant, we
p P P

examine its differential.

() = 4" RT) = Ry"[(1 - v)T% + a1y

p’Y
_ dp pdp N dp RT dp
(LIS A 3 Pl (VS VA L 4
p o Cyp P C o p
Td R
= Rp' (1= 7) + ] =0

R
The proof that the potential temperature 6 = T(%)g = CTp' ! is constant in an
adiabatic ideal gas is similar: This time, we use the first law of thermodynamics in a
different form. The work done by the gas is dW = pdV = R(dT — T%), so we write the
first law as ¢,d1" — RT%p = 0. From this we find dT" = (1 — ’y)T%. Again, to show that 0 is
constant, we examine its differential.

d0 = d(CTp') = Cp'~1[dT + (y — 1)T%]

),

_ dp
=Cp (1 —NT—=+(y—1)T
P (1 =) p (v—-1) )



