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outline

® bottleneck phenomena;
® thermalization physics;
® mathematics behind;

® numerical techniques and some results.




ottleneck phenomena
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ottleneck phenomena
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Log [E(k)/E(k,)]

Log [k/k,]

FIG. 1. Energy spectra from experimental measurements rescaled ac-

cording to the maximum d1351pat10n wave number &, and its energy

E(k,). The solid line is a fit by E(k)= E(k M (k/k,) =3

+a:(k/k )~ "exp[—p(k/k,)] (see the text). The dashed line is a fit with
a=0 (wnthout the second power-law range).

an example of fitting the energy spectrum with a function designating a “bottleneck’:
Zhen-Su She and Eric Jackson PFA1993




experimental data (e.g., Saddoughi and Veeravalli JEM1994)
closures of Navier-Stokes (e.g., Andre and Lesieur JFEM1973)
DNS data (e.g., She,Chen,Doolen,Kraichnan,Orszag PR1.1993)
some quantitative theories (e.g., Falkovich PoF1994)
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Kaneda et al. PoF2003: compensated energy spectrum



beyond energy: e.g., intermittency growth
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thermalization physics
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and | v(k) -k = 0. (5

For mathematical convenience we shall treat the three components of «(k) and g(k) ag
independent but regard (7) as a constraint applied to the initial condition of the fluid:
For from (6), if (7) is true at a particular moment it is always true at any other time.
Let us now consider & phase space wzth o, (), o, k), a.(k), B.(k), 8,(k), B.(k). -
o, (B, o, {k"), -+ . as its coordinate axes.” In this space each point, compatible with the
initial condition (7), represents a dynamical state of the fluid. The trajectory of this pon_l_L
governed by (6) deseribes the subsequent motion of the fluid. Differentiating (6), we have
do;(k) | 98:(K)

el = () = y Y, Z. 8
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DNS of Cichowlas et al. (PRL2005) “reproduced” by Bos and Bertoglio(PoF2006) with EDQNM



mathematics behind

O:v+v-Vu=—-Vp— (kg) ?*(-=V?*)%, V - v=0

ko >0, « = dissipativity . Here o > 1.

Dissipation rate (k/kg)** — 0 or oo when a — o0
Abstract form 0;v = B(v,v) + Lyv

Galerkin truncation  9;,u = Py B(u,u), Uo = Pre v
Projector Py, :  low-pass filter at wavenumber f

ergodicity




numerical techniques

u = cu+ F(u,t)

® problem characteristics: high resolution and stiff

® we want the scheme to have good stability property (acceptable time step
size), to be accurate (high order and with small coefficient in the error) and
cheap (explicit)

so, exact treatment of linear term (“ETD” and “IF”: why not) and Runge-Kutta
(contrast to multistep method: convenient, smaller error coefficient and larger
stability region): ETDRK is much more accurate than IFRK and we finally
choose ETD4RK by Cox and Matthews (JCP02)
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numerical techniques
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“fast phase”,“slow manifold”

“slaved scheme” (Frisch et al. JFM1986)




numerical results

(; +2 (é})za + (;;)OO> E(k,t) = //Ak dpdqOpqb(k, p, Q)p%E(q,t) K°E(p,t) — p*E(k,t)]

| — o~ HEpgthg ™ (k2% 4p2¥ 4q2))¢

prpgthg @ (k2o 4p2atqe)

with the third-order correlations relaxation time 6y, =

k
Hkpg = fk + pip + pig and g = ag [fo p*E(p, t)dp} . b(k,p,q) = F(xy + 2°),
where z, y, and z are the cosines of the interior angles of the triangle facing,
respectively, the sides &, p, and q.

“QN” --- ChOU( | 940), Mi”iOI’]ShtChikOV( 194 | )I realizability problem

“N” --- Lee (|952), HOPf( | 952) statistics of absolute equilibria of truncated Euler
DIA (Kraichnan): tractability problem
“ED”,“M” --- Orszag(1970, 1977)

Eddy-Damped Quasi-Normal Markovian

Galerkin method with “tophat” bases (energy exactly conserved)




hyperviscous EDQNM:
convergence to Galerkin-truncation and secondary bottleneck
resulted from eddy viscosity




—h-NS: a=40
ce- 53

=== k2

FIG. 1: Flatness and moments of filtered field v(r): The FIG. 2: Energy spectrum: The inertial scaling, say, the Kol-
Kolmogorov log-normal model (K62) [8] for intermittency mogorov —5/3 law, and the absolute equilibrium spectrum
growth is also shown for reference of the numerical hyper- k* are also shown for reference; the vertical dashed line de-
viscous Navier-Stokes (h-NS) result. notes the position of kg.

o(r) =ve(z+1,9,2) —ve(x,y, 2)

a direct numerical simulation of hyperviscous Navier-Stokes




a ‘cartoon’ for thermalization







conclusions and perspectives

® convergence to Galerkin truncation, partial
thermalization;

® secondary bottleneck caused by eddy viscosity.

® dynamics/mechanics, flow structures

® more “rugged” invariants, depression of
thermalization




conclusions and perspectives
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Thank You !



Comparison of Truncated 3D Euler Energy Spectra

K

absolute equilibria with helicity




