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outline

• bottleneck phenomena;

• thermalization physics;

• mathematics behind;

• numerical techniques and some results.



bottleneck phenomena
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A. N. Kolmogorov (1903 – 1987)Very influential 1941 theory of homogeneous, isotropic,

incompressible turbulence based on Richardson's ideas

Energy is added to the fluid on the inertial scale 
0 and is dissipated as heat on the 

dissipative scale .  Energy transfer between eddies on intermediate scales is 

lossless.
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FIG. 1. Energy spectra from experimental measurements resealed ac- 
cording to the maximum dissipation wave number kp and its energy 

E(k,). The solid line is a fit by E(k)=E(kp)[(k/kp)-5’3 

+a(k/k,,) -‘]exp[ -p( k/k,)] (see the text). The dashed line is a fit with 
a=0 (without the second power-law range). 

than the original experimental uncertainty and the quality 
of the collapse by Gagne and Castaing is not degraded in 

any way. The procedure for collapsing the spectra is quite 

straightforward and systematic using the dissipation spec- 
trum k2E( k). The normalization wave number kp, which is 

reflected in a distinguished peak at the point where the 

exponential falloff takes over, may be- closely estimated, 

with the energy then normalized by the value of the energy 
spectrum at that point, E(kp).13 It is clear that the quality 

of the resulting collapse, shown in Fig. 1, is as good as that 

in Ref. 9 except for the extreme points of several data sets. 

The leftmost points correspond to the largest scale, which 
is often at the beginning of the inertial range where the 
influence of large-scale coherent structures is not negligi- 
ble. The rightmost points correspond to smallest scale 

where, again, experimental measurements suffer from res- 
olution problems. We conclude that all the experimental 
spectra data, except for a few of these extreme points, sup- 

port the existence of a universal function F (k/k,). 

Direct examination of k2E(k> is also quite important 
in verifying the quality of the collapse since the excitation 

level of all scales in the inertial range falls within the same 

order of magnitude so that scatter from the collapse is 
much more effectively emphasized. The resulting collapse 

is shown in Fig. 2. In this set of curves, the scatter of the 
collapsed data is approximately the same as the scatter 

within a single data set. 
Several comments are in order now. First, in our re- 

scaling procedure, the peak wave number kp and the cor- 
responding energy level E( kp) in the dissipation spectrum 
FE(k) are defined from the spectra themselves; thus the 

universality found here is independent of any theory (Kol- 

-4 -2 0 2 
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FIG. 2. Dissipation spectra (k/k,)‘E( k)/E( kp) derived from Fig. 1. 

mogorov’s or others). Our results indicate the existence of 

a characteristic wave number for each Reynolds number. 

With respect to this wave number, the energy spectrum is 

a universal function; larger Reynolds number spectra sim- 
ply extend further left. This result is consistent with Kol- 

mogorov’s proposal; nevertheless, it is not precisely the 
same. Kolmogorov suggested that the characteristic wave 

number is, completely determined by the mean dissipation 

rate and the kinetic viscosity, as is the Reynolds number. 

Thus, in Kolmogorov’s theory, the resealing is globally 
determined; to verify Kolmogorov’s theory, the peak wave 

number (in Kolmogorov units), k/k,+ that we have de- 

termined here should be constant, independent of Rey- 

nolds number. On the other hand, if a whole range of 
exponents were present in these flows (multifractals), kp 

can still be determined, but k,Jkd would increase with Rey- 
nolds number because of the increasing significance of 
smaller exponents at higher Reynolds number. In Fig. 3, 

we show a plot of kdkd determined by our procedure ver- 
sus Reynolds number. The values are quite scattered 
around a constant (there might be a vague trend, if ignor- 
ing the first point, of increasing kJkd with Reynolds num- 

her) . At this point, we do not see any clear evidence which 
invalidates the Kolmogorov 1941 theory. The data do not, 

at the same time, rule out the multifractal resealing, be- 
cause the range of RA explored here is not large enough. 

Second, we should point out that the difference be- 
tween the simple resealing used here and the multifractal- 

type transformation (3) used by Gagne and Castaing can 
only be manifested in the transition region between the 
inertial and dissipation ranges in the spectra. However, 

high-wave-number (or frequency, when using Taylor’s hy- 

pothesis) resolution in experiments do not provide a suffi- 
cient range beyond the transition region for the difference 

between two resealing procedures to be fully manifested. In 

1527 Phys. Fluids A, Vol. 5, No. 7, July 1993 Letters 1527 
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an example of fitting the energy spectrum with a function designating a “bottleneck”: 
Zhen-Su She and Eric Jackson PFA1993



Run 2048-1. Figure 4 shows !(k) at various times in Run
2048-1. The range over which !(k) is nearly constant is
quite wide; it is wider than the flat range of the correspond-

ing compensated-energy-spectrum "see Fig. 5#. The station-
arity is also much better than that of lower resolution DNSs

"figures omitted#, and !(k)/$%& is close to 1. In the study of
the universal features of small-scale statistics of turbulence,

if there are any, it is desirable to simulate or realize an iner-

tial subrange exhibiting "i#–"iii# rather than "i#– "iii#. The
present results suggest that a resolution at the level of Run

2048-1 is required for such a simulation. Such DNSs are

expected to provide valuable data for the study of turbulence,

and in particular for improving our understanding of possible

universality characteristics in the inertial subrange.

These considerations motivate us to revisit another

simple but fundamental question of turbulence: ‘‘Does the

energy spectrum E(k) in the inertial subrange follow Kol-

mogorov’s k!5/3 power law at large Reynolds numbers?’’

Figure 5 shows the compensated energy spectrum for the

present DNSs "the data were plotted in a slightly different
manner in our preliminary report4#. From the simulations

with up to N"1024, one might think that the spectrum in the
range given by

E"k #"K0%
2/3k!5/3 "1#

with the Kolmogorov constant K0"1.6–1.7 is in good

agreement with experiments and numerical simulations "see,
for example, Refs. 1, 3, 9, and 10#. However, Fig. 5 also
shows that the flat region, i.e., the spectrum as described by

"1#, of the runs with N"2048 and 4096 is not much wider
than that of the lower resolution simulations. The higher

resolution spectra suggest that the compensated spectrum is

not flat, but rather tilted slightly, so that it is described by

E"k #'%2/3k!5/3!(k, "2#

with (k)0.
The detection of such a correction to the Kolmogorov

scaling, if it in fact exists, is difficult from low-resolution

DNS databases. The least square fitting of the data of the

40963 resolution simulation for (d/d log k)logE(k) to

(!5/3!(k)log k#b (b is a constant# in the range 0.008
$k*$0.03 gives (k"0.10. The slope with (k"0.10 is
shown in Fig. 5.

It may be of interest to observe the scaling of the second

order moment of velocity, both in wavenumber and physical

space. For this purpose, let us consider the structure function

S2"r#"$!v"x#r,t #!v"x,t #!2&,

where S2 may, in general, be expanded in terms of the

spherical harmonics as

S2"r#" +
n"0

,

+
m"!n

n

f nm"r #Pn
m"cos -#eim..

Here, r"!r! and -,. are the angular variables of r in spheri-
cal polar coordinates, Pn

m is the associated Legendre polyno-

mial of order n ,m , and f nm(" f n ,!m
* ) is a function of only r ,

where the asterisk denotes the complex conjugate. The time

argument is omitted. For S2 satisfying the symmetry S2(r)

"S2(!r), we have f km"0 for any odd integer k . In strictly
isotropic turbulence, f nm must be zero not only for odd n ,

but also for any n and m except n"m"0. However, our
preliminary analysis of the DNS data suggests that the an-

isotropy is small but nonzero. In such cases, f nm is also small

but nonzero, and S2 itself may not be a good approximation

for f 0" f 00 . To improve the approximation for f 0 , one

might, for example, take the average of S2 over r/r

FIG. 3. Normalized energy dissipation rate D versus R/ from Ref. 5 "data
up to R/"250), Ref. 3 "!,"#, and the present DNS databases "#,$#.

FIG. 4. !(k)/$%& obtained from Run 2048-1.

FIG. 5. Compensated energy spectra from DNSs with "A# 5123, 10243, and
"B# 20483, 40963 grid points. Scales on the right and left are for "A# and "B#,
respectively.
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experimental data (e.g., Saddoughi and Veeravalli JFM1994)
closures of Navier-Stokes (e.g., Andre and Lesieur JFM1973)

DNS data (e.g., She,Chen,Doolen,Kraichnan,Orszag PRL1993)
some quantitative theories (e.g., Falkovich PoF1994)

Kaneda et al. PoF2003: compensated energy spectrum



beyond energy:  e.g., intermittency growth
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thermalization physics

T.-D. Lee QJAM1952



thermalization physics

T.-D. Lee QJAM1952



DNS of Cichowlas et al. (PRL2005)  “reproduced” by Bos and Bertoglio(PoF2006) with EDQNM

scaling zone E!k; t" increases with time but E!k; t" de-
creases with time for k close (but inferior) to kth!t".

The traditionally expected [5,12] asymptotic dynamics
of the system is to reach an absolute equilibrium, which is a
statistically stationary exact solution of the truncated Euler
equations, with energy spectrum E!k" # ck2. Our new
results (see Fig. 1) show that a time-dependent statistical
equilibrium appears long before the system reaches its
stationary state. Indeed, the early appearance of a k2

zone is the key factor in the relaxation of the system
towards the absolute equilibrium: as time increases, more
and more modes gather into a time-dependent statistical
equilibrium, which itself tends towards an absolute
equilibrium.

Since the total energy E is constant, the energy dissi-
pated from large scales into the time-dependent statistical
equilibrium is given by

Eth!t" #
X

kth!t"<k

E!k; t": (4)

The time evolutions of kth and Eth are presented in Fig. 2.
The figure clearly displays the long transient during which,
for all resolutions, kth decreases and Eth increases with
time. Note that, at all times, kth increases and Eth decreases
with the resolution.

Since the energy of the time-dependent equilibrium
increases with time, the modes outside the equilibrium

lose energy. The presence of a time-dependent equilibrium
thus induces an effective dissipation on the lower k modes.

We now estimate the characteristic time of effective
dissipation !!kd" of modes kd close to kth!t" by assuming
time-scale separation and studying, at each time t, the
relaxation towards the time-independent absolute equilib-
rium characterized by Eth!t" and kmax. The existence of a
fluctuation dissipation theorem (FDT) [13,14] ensures than
dissipation around the equilibrium has the same character-
istic time scale as the equilibrium correlation functions
hv̂"!k; t"v̂#!k0; 0"i [brackets denote equilibrium statistical
averaging over initial conditions v̂#!k0; 0"]. Defining this
time scale !C as the parabolic decorrelation time

!2C@tthv̂"!k; t"v̂#!k0; 0"ijt#0 # hv̂"!k; 0"v̂#!k0; 0"i; (5)

time translation invariance allows one to express the
second-order time derivative as $h@tv̂"!k; t" %
@t0 v̂#!k0; t0"ijt#t0#0. Using expression (1) for the time de-
rivatives reduces the evaluation of !C to that of an equal-
time fourth-order moment of a Gaussian field with corre-
lation hv̂"!k; t"v̂#!$k; t"i # AP"#!k" [5] where A #
Eth=!2kmax"3. The only nonvanishing contribution is a
one loop graph [8,15]. The correlation time !C associated
with wave number k is found in this way [14] to obey the
simple scaling law

!C # C
k

!!!!!!!
Eth

p ; (6)

where C # 1:433 82 is a constant of order unity. The time
scale !C is the eddy turnover time at wave number kth.
Because of Kolmogorov (K41) behavior (see below) the
evolution of Eth is governed by the large-eddy turnover
time. The assumption of time-scale separation made above
is thus consistent.

This strongly suggests the introduction of an effective
generalized Navier-Stokes model for the dissipative dy-

4 8 21
t

0

50.0

1.0

E  ht  

01

001

kht  

FIG. 2 (color online). Time evolution of kth (left vertical axis)
and Eth (right vertical axis) at resolutions 2563 (circle &), 5123

(triangle 4), 10243 (cross %), and 16003 (cross +).
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FIG. 1 (color online). Energy spectra. Top: resolution 16003 at
t # !6:5; 8; 10; 14" (!, +, &, *); bottom: resolutions 2563 (circle
&), 5123 (triangle 4), 10243 (cross %), and 16003 (cross +) at
t # 8. The dashed lines indicate k$5=3 and k2 scalings.

PRL 95, 264502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005

264502-2



∂tv = B(v, v) + Lαv

∂tu = PkGB(u, u), uo = PkGv0

PkG kGlow-pass filter at wavenumberProjector

Galerkin truncation

Abstract form

Dissipation rate

α = dissipativity Here α > 1.

→ 0 or ∞ when α→∞

:

.

mathematics behind

∂tυ + υ ·∇υ = −∇p− (kG)−2α(−∇2)αυ, ∇ · υ=0

(k/kG)2α

ergodicity ... ...

kG > 0,



numerical techniques
• problem characteristics: high resolution and stiff 

• we want the scheme to have good stability property (acceptable time step 
size), to be accurate (high order and with small coefficient in the error) and 
cheap (explicit) ... ...

• so, exact treatment of linear term (“ETD” and “IF”: why not) and Runge-Kutta 
(contrast to multistep method: convenient, smaller error coefficient and larger 
stability region): ETDRK is much more accurate than IFRK and we finally 
choose ETD4RK by Cox and Matthews (JCP02)

u̇ = cu + F (u, t)
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numerical techniques
• problem characteristics: high resolution and stiff 

• we want the scheme to have good stability property (acceptable time step 
size), to be accurate (high order and with small coefficient in the error) and 
cheap (explicit) ... ...

• so, exact treatment of linear term (“ETD” and “IF”: why not) and Runge-Kutta 
(contrast to multistep method: convenient, smaller error coefficient and larger 
stability region): ETDRK is much more accurate than IFRK and we finally 
choose ETD4RK by Cox and Matthews (JCP02)

u̇ = cu + F (u, t)

“slaved scheme” (Frisch et al. JFM1986)

“fast phase”, “slow manifold”



“QN” --- Chou(1940), Millionshtchikov(1941): realizability problem

“N” --- Lee (1952), Hopf(1952): statistics of absolute equilibria of truncated Euler

DIA (Kraichnan): tractability problem

“ED”, “M” --- Orszag(1970, 1977)
Eddy-Damped Quasi-Normal Markovian

numerical results

Galerkin method with “tophat” bases (energy exactly conserved)

(
∂

∂t
+ 2

(
k

kG

)2α

+
(

k

kT

)∞)
E(k, t) =

∫∫

"k

dpdqθkpqb(k, p, q)
k

pq
E(q, t)

[
k2E(p, t)− p2E(k, t)

]

with the third-order correlations relaxation time θkpq = 1−e−[µkpq+k−2α
G

(k2α+p2α+q2α)]t

µkpq+k−2α
G (k2α+p2α+q2α)

,

µkpq = µk + µp + µq and µk = a1

[∫ k
0 p2E(p, t)dp

] 1
2
. b(k, p, q) = p

k (xy + z3),
where x, y, and z are the cosines of the interior angles of the triangle facing,
respectively, the sides k, p, and q.
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hyperviscous EDQNM:
convergence to Galerkin-truncation and secondary bottleneck 

resulted from eddy viscosity



ṽ(r) = vx(x + r, y, z)− vx(x, y, z)
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FIG. 1: Flatness and moments of filtered field ṽ(r): The
Kolmogorov log-normal model (K62) [8] for intermittency
growth is also shown for reference of the numerical hyper-
viscous Navier-Stokes (h-NS) result.
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FIG. 2: Energy spectrum: The inertial scaling, say, the Kol-
mogorov −5/3 law, and the absolute equilibrium spectrum
k2 are also shown for reference; the vertical dashed line de-
notes the position of kG.

from growing to decreasing at the thermalization scales is expected to happen at a value of dissipativity α around
10.

Intermittency growth of fluid turbulence is specific to the structure of Navier-Stokes flow, while equilibrium
statistics is a result of “universal” maximal entropy principle; it is interesting, if not surprising, that it is the linear
term who works to cause and balance the competition between these features. The subtle balance between the
nonlinear and normal dissipation leads to the coherence of the flow that a Gaussian field lose [11]; hyperviscous
then randomizes the flow at the thermalization scales, which produces the eddy viscosity causing the pseudo
dissipative behaviors, and introduces artificial dissipative structures [12] limited to the narrow dissipation ranges.

This material is based on work in collaboration with Uriel Frisch, Susan Kurien and Mark Taylor.
Acknowledgements: We thank Dr. Takeshi Matsumoto for the help with the starting of the numerics. Communi-

cations with Prof. Victor Yakhot are helpful.
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a direct numerical simulation of hyperviscous Navier-Stokes



a “cartoon” for thermalization





conclusions and perspectives

• convergence to Galerkin truncation, partial 
thermalization;

• secondary bottleneck caused by eddy viscosity.

• dynamics/mechanics, flow structures ...... 

• more “rugged” invariants, depression of 
thermalization ...... 



conclusions and perspectives

Three-dimensional magnetohydrodynamic turbulence 97 

2. Definitions, dynamical equations, and numerical details 
The constant-density ( p )  incompressible three-dimensional MHD equations, in the 

presence of a uniform and static external magnetic field (B,), may be written in 
dimensionless form as 

(3) 

(4) 

v*v = 0, ( 5 )  
V * b  = 0, (6) 

where v is the velocity field, b the fluctuating magnetic field, and p" is the total 
(kinetic + magnetic) pressure - determined by the incompressibility condition. The 
dimensionless kinematic viscosity, v, and magnetic diffusivity, 7, are both uniform 
scalars, and their reciprocals respectively define the large-scale mechanical (Re) and 
magnetic (Rm) Reynolds numbers. For convenience we also refer to 7 as the resistivity. 
Time, t ,  is measured in units of the initial large-scale eddy turnover time, i.e. the unit 
lengthscale divided by the initial unit velocity scale. Note that since v and b represent 
fluctuations relative to the mean fields U (= 0) and B,, they are zero-mean quantities. 
We take the d.c. magnetic field to be in the z-direction, i.e. Bo = B,2. The non- 
dimensionalization is such that for the chosen initial conditions (see below), Bt is the 
ratio of the energy density associated with B, to that associated with the initial 
magnetic fluctuations, b(t = 0). 

The fluid mass density p is spatially uniform and constant in time, whereas all other 
fields are in general functions of space x = (x, y ,  z )  and time t. The runs discussed here 
have approximately zero magnetic helicity at all times (see Stribling, Matthaeus & 
Ghosh 1994a and Stribling, Matthaeus & Oughton 19943 for a discussion of runs with 
non-zero H,) and were performed at unit magnetic Prandtl number (i.e. v = 7). Using 
Braginskii's (1965) forms for the viscosity and magnetic diffusivity of a collision- 
dominated fully ionized Hydrogen plasma it can be shown (e.g. Hollweg 1985, 1986) 
that v / r  M 3 x 10-6T4/n, where T is the plasma temperature in K and n the plasma 
number density (per cm3). For geo- and astrophysical conditions this ratio spans an 
enormous range. In the Sun's photosphere for example it is - lop7, while in the corona 
it is - lo1'. Our computational resources were adequate for examining cases with 
v = 7 z 1/200, but decreasing either v or 7 by even one order of magnitude requires a 
code resolution greater than that available to us, in order to maintain accuracy. In this 
initial investigation the simulations have therefore been restricted to the case v = 7. 

In these units the electric current density i s j  = V x b, the fluid vorticity o = V x v ,  
and the magnetic vector potential is related to the field by b = V x a, with the stream 
function defined by v = V x v / .  The Coulomb gauge is assumed to be in effect for both 
a and v/  (e.g. V a a  = 0). We denote the kinetic and magnetic energies per unit mass by 
E" = ( v 2 / 2 ) ,  and Eb = ( b 2 / 2 ) ,  where the angle brackets denote spatial averaging, 
here assumed to be equivalent to ensemble averaging. We will have occasion to refer 
to both the bulk values of E" and E b  and also to their spectra E"(k), etc. The bulk 
variables ('globals') characterizing the fluid can be interpreted in two ways: (a)  x-space 
averages of the appropriate (scalar) field, e.g. E" = ( v 2 ) / 2 ,  and (3) integrals of the 
associated spectra over all wavenumbers, e.g. E" = d3kEv(k). 

It is well known that the ideal MHD equations support an infinite number of 

av -+ u * V V  = - Vp* + b .  V b  + B, * V b  + vV2v, 
c?t 

i3b 
- + 0- V b  = b-  V V  + Bo* V V  + yV2b, ar 



Thank You !
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Comparison of Truncated 3D Euler Energy Spectra
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Figure 2.2.1.2: Comparison the evolutions of two spectra starting with zero mean
helicity (ZMH) and pure-helical waves (PHWs). Black solid lines designate the
initial spectra, and the magenta dash dot lines the first stage evolution, while the
red dashed ones the second stage and the blue solid ones correspond to the third
stage. The bold red dashed straight lines present the k2 spectra, the absolute equi-
librium spectrum without helicity.

sation” since now it is caused by helicity, which is antisymmetric, without “Pauli
Principle” to exclude the “particles” to be in the “degenerate states” with the same
“energy” (wave vectors of the same module).

We apply“kicking” strategy of injecting helicity withut changing energy also
to the simulation of hyperviscous Navier-Stokes equations as shown in Fig. 2.2.2.5.
We see that helicity effect is also very pronounced.

3 EDQNM
Without considering the helicity, the eddy-damped quasi-normal Markovian(EDQNM)
equation for three-dimensional kinetic-energy spectrum dynamics reads

6

absolute equilibria with helicity


