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Introduction

Motivation and Background
Hydrodynamics
\VIN|

Accretion is a Fundamental Astrophysical Process

Accretion is the process by which a massive object collects
surrounding matter by gravitation. Accretion disks are observed in
many astrophysical processes (binary star systems, center of
galaxies).

Keplerian balance in mom.
eqn.

e 02=GM/r?

Angular momentum transport
needed!
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Geometry

@ Astrophysical Disks: Differential Rotation

s Keplerian balance: Q2 = €Y/

@ Laboratory: Taylor-Couette Geometry
o Imposed Q(r1),Q(r2)
@ Shearing Sheet - Simplified Geometry

r*
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Keplerian Disks are Hydrodynamically Stable

@ Linear stability for the astrophysical regime
s Rayleigh stable 2(r?Q) <0
o Finite amplitude disturbance can cause instability

@ Turbulent mixing - Does it produce the needed angular
momentum transport?

o Uy large (“eddy”) viscosity
o Experiments - Hydrodynamic turbulence cannot transport

angular momentum effectively in astrophysical disks (Ji et. al.
Nature 2006)
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Magnetorotational Instability

Shear instability in the presence of magnetic fields
o First discovered by Velikhov (1959) and Chandrasekhar (1960)
@ Rediscovered by Balbus and Hawley (1991)
o MRI generates the level of angular momentum transfer needed
@ Operates in the Rayleigh stable regime %(r2Q) <0
@ Axisymmetric

@ Linear instability
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Magnetorotational Instability

@ Balbus & Hawley's original simulation of the MRI
o Contour plot of angular momentum perturbations (r, z)
@ Transfer of angular momentum

@ Large vertical gradient of the “fingering instability” motivates
scalings
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Previous Work

@ Balbus and Hawley (1991)
o Efficient transfer of angular momentum
@ Didn't include dissipative processes - viscous or ohmic
@ No Saturation
@ Sano et. al. (1998)
@ First to show saturation of this instability
Compressible flow
Resistivity and viscosity included
Critical parameter, Elsasser number A = v3 /Qn
@ A > 1 Saturation
@ A < 1 No saturation

@ Goodman and Xu (1994)
o Nonaxisymmetric perturbations can saturate

¢ © @

@ Lathrop group
o First experimental observation of MRI (Sisan et. al. 2004)
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Derivation of Reduced Model

Full Equations

Conservation of Momentum

D
PY oo xu= ——vp— L vBP+-LB.VB+ vV,
Dt 2/10p Hop

Induction Equation

DB
— =B-V V2B
Dt vt

Incompressibility, Solenoidal Condition

V-u=0,V-B=0
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Derivation of Reduced Model

Reduced Modeling

Astrophysical Regime - Large Parameters

or<ln<l
° Re:ﬂ,Rm:%»l

v

@ Several different time scales:

» Rotational time scale Q!

o Alfven time scale L/v}

o Diffusive time scale L?/v, L?/n
o Ol <« L/va<x L2/, 121

@ To reach saturation we must integrate far in time
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Shearing Sheet

@ Shearing sheet approximation at r* with local angular velocity
Q*(r*)2

@ Local Cartesian coordinates (r, ¢,z) ~ (x,y, z)

@ Straight channel:
—L*/2 <x* < L*/2,—00 < y* < 00,—00 < z¥ < 00

@ Linear Shear: Uy = (0,0%x*,0)

o Constant Background Magnetic field: By = (0, B, B;/)

tor>

r*
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Derivation of Reduced Model

Formulation of the Model Problem

@ Non-dimensionalize

@ vy = B;o,/\/uop* U*, Q,v,n are the dimensionless Alfven
speed, rotation rate, kinematic viscosity and ohmic diffusivity

@ V-u=0,V-b=0, axisymmetry allow the use of a stream
function and flux funtion

@ U= (_wz7 V,wx)y b= (_¢Za b7 ¢X)
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Reduced Model

Nondimensionalized Equations

Axisymmetric perturbations of the form

u=(u,v,w) = (=, v,¥x), b= (—¢z, b, ¢x) give the following
equations

V20 + 2Qv, + J(1p, V2) = vaV2h, + vad(o, V2p) + vV 4.
Ve — (2Q+ o)z + (¥, v) = vab; + v3iJ($, b) + vV,

b+ (¥, ¢) = Yz + V30,

by + J(¢, b) = v, — 0, + J(&,v) + nV2b

Here, J(f,g) = fgz — f28x.
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Derivation of Reduced Model

Scaling Assumptions

@ Traditional approach to nonlinear saturation: weakly nonlinear theory
with (A = Ac)/Ae < 1.

@ Our approach: strongly nonlinear theory

@ Shear is the dominant source of the energy for the MRI
@ rapid rotation, strong shear: (Q,0) =61(Q, 6)

@ MRI itself requires the presence of a (weaker) vertical magnetic field
@ magnetic field: va ~ 1, vi = B,,1/\/1i0p*U”

@ Dissipative effects are weaker still but cannot be ignored since they are
ultimately responsible for the saturation of the instability

o weak dissipative processes: (v,n) = €(?,1)

@ Takee~d < 1,A=0(1) (Case A) or e < § < 1,A > 1 (Case B)
e Rm=|c*|L**/n*, Pm=v*/n*, S = vil*/n*
@ s0o Rm > S > max(1, Pm), while A = O(1)
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Multiple Scales Expansion

@ Motivated by Balbus & Hawley

@ Large wavenumber in z - large variation

e 9, =¢ 1o,

@ Have large gradients in x direction

@ Fast dynamic time scale, slow evolution to a statistically
steady state

@ O = 67181’ + o1

@ Set e by considering the size of our domain

@ L, wavelength of fastest growing mode - Linear
Dispersion
o Ly ~elL,
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Asymptotic Expansion

@ To solve the scaled equations we expand every variable

WXz, 8, T) =3 €282 9(x, X, 2,6, T) + ...
i7j
@ Deduction: Leading order azimuthal fields v, bpo represent
large-scale adjustment to background shear and toroidal field
due to MRI

@ Separate all variables into their mean and fluctuating
components

° wij(x’szv t, T) = %—(Xa T) +W-(X,X,Z, t, T)

y

o Yy(X, T) =limrvoco = [, ¥i(x, X, 2, t, T)dxdzdt

@ We now collect terms at each order in the evolution equations
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Reduced Fluctuating Equations

At O(ez672)
1 . .
V00e + 2001, + (5) * Vo, V4ibo) = VAV 60z + (1)

30) s+ ()

N=

Vite — <2§ +0+ 3xVoo> D250 + (g)

_ N e\
A (bilz — 0xboodhoz + (5 ) Ix(%6o. bao)) +(5) 7V via,

Jx(w(l)ov Véo) = (2)

€

d

€

)E Lo 8400 = Vior + (5

Shoe + ( ) 9% %0, (3)

1
- € 5 o~ —
bise — Ix boothgo, + (5) * Jx (100, b11) = Vi1, — (G + OxVoo) b0, + (4)

() Sehorvia).+ (&
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Feedback onto the Shear

@ For both sets of scalings (e < 0 & € ~ ¢) there is feedback
onto the imposed shear
@ Readjustment of the local background state

@ (0 + OxVqo) terms
o Tends towards solid body rotation, |0 + OxVoo| < ||
@ Angular momentum must have been transported

o At O(ed) we close this system and get relations for dx Voo and
Ox boo

n — 2
DOx Voo = —vYoozvi1 + Vadoozb11

i0x boo = —oozb11 + Poozvi1

@ Oxbgo is the O(1) correction to the background toroidal field
Btor
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Single Mode Theory

@ Goodman and Xu (1994) & Julien and Knobloch (2006)
@ Solutions
© Yo = M cos(nz)ilpy, vi; = € sin(nz)9];, Goo =
e M sin(nz)dpy, b1y = e cos(nz)by;

@ No variation in x
@ Nonlinear ODE — evolves to saturation
o Does not work for a combination of such modes

A
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Modeling the Reduced Equations

Numerical Method

@ Time integration: Runge-Kutta scheme (Spalart et. al. 1991)

o diffusion terms treated implicitly
o all other explicitly

@ Spectral

@ Periodic boundary conditions in z
@ Rigid (no slip), Stress Free, or Periodic in x
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Modeling the Reduced Equations O(1) Elsasser Regime

CaseB:e < o<1, A>1

@ Nonlinear and dissipative terms are subdominant
@ Unbounded algebraic growth at leading order
@ Saturation of Vg
o Decaying and growing terms — steady product
@ No quadratic nonlinearities - energy transferred through
modification of the dispersion relation

ms of by, 1.0 r
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T T T T T T T T T T T T

0 200 400 600 800 1000 0 200 400 600 800 1000
time time

Ben Jamroz Reduced Modeling of the MRI
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Modeling the Reduced Equations O(1) Elsasser Regime

Case A: e ~ §,A = O(1)

Single Mode results

(a) (b)
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@ Good agreement with linear theory for a robust set of
boundary conditions

@ In particular the saturated value of OxVgg matches the theory
@ Can be of use in a parameterization model
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Case A: Channel Initial Condition

6o Gaussian in x, vertical magnetic field lines
Small random perturbation in 1,
viy = bj; =0
Critical wavenumber grows
Saturated state takes up the largest allowed scale in z
(coarsening)

© ¢ © ¢ ¢

e 100

x
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Coarsening

Begin from a random state with a fixed box length in z
Fastest growing linear mode dominates early evolution

Flow coarsens to fill computational domain

The saturated value of OxVgo matches the single mode theory
for a mode with corresponding vertical wavenumber

@ Suggest using a parameterization model for large scale
simulations

e © ¢ ¢

(]

Comparison with Case B
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Summary

Summary & Future Work

@ Derived reduced asymptotic models for the saturation of the
MRI

@ Found a back reaction on the imposed shear which allows for
saturation

@ Numerical results

o Future Work

@ Parameterization model
¢ Non-axisymmetric

@ Non-axisymmetric saturation
@ Dynamo — saturation
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