
David E. Keyes
Department of Applied Physics & Applied Mathematics

Columbia University

Domain Decomposition Methods for
Partial Differential Equations

NCAR, 22 July 2008

Opening inspiration

“… at this very moment the search is on – every numerical analyst
has a favorite preconditioner, and you have a perfect chance to
find a better one.”

- Gil Strang (1986)

NCAR, 22 July 2008

Definition and motivation

z Domain decomposition (DD) is a “divide and
conquer” technique for arriving at the solution of
problem defined over a domain from the solution of
related problems posed on subdomains

z Motivating assumption #1: the solution of the
subproblems is qualitatively or quantitatively
“easier” than the original

z Motivating assumption #2: the original problem does
not fit into the available memory space

z Motivating assumption #3 (parallel context): the
subproblems can be solved with some concurrency

NCAR, 22 July 2008

Remarks on definition

z “Divide and conquer” is not a fully satisfactory
description
� “divide, conquer, and combine” is better
� combination is often through iterative means

z True “divide-and-conquer” (only) algorithms are
rare in computing (unfortunately)

z It might be preferable to focus on “subdomain
composition” rather than “domain decomposition”

We often think we know all about “two” because two is “one and
one”. We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)

NCAR, 22 July 2008

Remarks on definition

z Domain decomposition has generic and specific
senses within the universe of parallel algorithms
� generic sense: any data decomposition (considered in

contrast to task decomposition)
� specific sense: the domain is the domain of definition of an

operator equation (differential, integral, algebraic)

z In a generic sense the process of constructing a
parallel program consists of
� Decomposition into tasks
� Assignment of tasks to processes
� Orchestration of processes

�Communication and synchronization

� Mapping of processes to processors

NCAR, 22 July 2008

Divide, conquer, and combine –
as natural as breathing

z Most of the area of the lung
is at these smallest scales,
where gaseous exchange
(“conquer”) occurs
efficiently

z Most of the volume of the
lung just transports air and
blood down (“divide” phase)
to microstructures, where
they mix

z The oxygenated blood and
deoxygenated air then
“recombine” for output

NCAR, 22 July 2008

Subproblem structure

z The subdomains may be of the same or
different dimensionality as the original

2D
2D

2D

1D
0D

NCAR, 22 July 2008

Plan of presentation
z Imperative of domain decomposition (DD) for

terascale computing (and beyond)
z Basic DD algorithmic concepts

� Schwarz
� Schur
� Schwarz-Schur combinations

z Basic DD convergence and scaling properties
z En route:

� mention some “high watermarks” for DD-based
simulations

NCAR, 22 July 2008

Caveat
z This talk is Part I of a three-hour short course sometimes done

“tag-team” with Olof Widlund, NYU
z Part II contains material on the very successful class of

discontinuous domain decomposition methods known as
mortar and “FETI” (finite element tearing and
interconnection), not covered in today’s talk (though invented
here in Boulder ☺)

z Also not covered here are recent interesting developments in
optimized Schwarz methods

z The speakers likes these methods and believes they are
important in practice; their omission is purely a matter of
scope

z However, software for them is not as readily available as the
software to be discussed in connection with Schwarz methods
here

NCAR, 22 July 2008

Prime sources for domain decomposition

1996 1997 2001 2004 2008

NCAR, 22 July 2008

Other sources for domain decomposition

+ DDM.ORG and other proceedings volumes, 1988-2008

1992
1994 1995 2006

XVI

Olof Widlund & David Keyes

55

NCAR, 22 July 2008

Algorithmic requirements from architecture

z Must run on physically distributed memory units
connected by message-passing network, each serving
one or more processors with multiple levels of cache

T3E

“horizontal” aspects “vertical” aspects

NCAR, 22 July 2008

Building platforms is the “easy” part

z Algorithms must be
� highly concurrent and straightforward to load balance
� latency tolerant
� cache friendly (good temporal and spatial locality)
� highly scalable (in the sense of convergence)

z Domain decomposition “natural” for all of these

z Domain decomposition also “natural”
for software engineering

z Fortunate that its theory was built
in advance of requirements!

NCAR, 22 July 2008

The earliest DD paper?

What Schwarz proposed…

Solve PDE in circle
with BC taken from
interior of square

Solve PDE in square
with BC taken from
interior of circle

A
nd iterate!

NCAR, 22 July 2008

Rationale
z Convenient analytic means (separation of variables) are

available for the regular problems in the subdomains,
but not for the irregular “keyhole” problem defined by
their union

z Schwarz iteration defines a functional map from the
values defined along (either) artificial interior boundary
segment completing a subdomain (arc or segments) to an
updated set of values

z A contraction map is derived for the error
z Rate of convergence is not necessarily rapid – this was

not a concern of Schwarz
z Subproblems are not solved concurrently – neither was

this Schwarz’ concern

NCAR, 22 July 2008

Other early DD papers

NCAR, 22 July 2008

Rationale

z For Kron: direct Gaussian elimination has
superlinear complexity
� union of subproblems and the connecting problem

(each also superlinear) could be solved in fewer
overall operations than one large problem

z For Przemieniecki: full airplane structural
analysis would not fit in memory of available
computers
� individual subproblems fit in memory

NCAR, 22 July 2008

Rationale

(N/P) < M

z Let problem size be N, number of subdomains
be P, and memory capacity be M

z Let problem solution complexity be Na, (a≥1)
z Then subproblem solution complexity is (N/P)a

z Let the cost of connecting the subproblems be
c(N,P)

z Kron wins if

z Przemieniecki wins if

P (N/P)a + c(N,P) < Na

or c(N,P) < Na (1-P1-a)

NB: Kron
does not win

directly if
a=1 !

NCAR, 22 July 2008

Przemieniecki’s prediction (1963)

“From past experiences with the analysis of aircraft structures, it is
evident that some form of structural partitioning is usually necessary,
either because different methods of analysis are used on different
structural components or because of the limitations imposed by
digital computers. Even when the next generation of faster and
larger digital computers becomes a well-established tool for the
analysis of aircraft structures, it seems rather doubtful, because of
the large number of unknowns, that the substructure displacement
method of analysis would be wholly superseded by an overall
analysis carried out on the complete structure.”

NCAR, 22 July 2008

Contemporary interest

z Goal is algorithmic scalability:
fill up memory of arbitrarily large machines to
increase resolution, while preserving nearly constant*
running times with respect to proportionally smaller
problem on one processor

*at worst logarithmically growing

NCAR, 22 July 2008

Two definitions of scalability

z “Strong scaling”
� execution time decreases in

inverse proportion to the
number of processors

� fixed size problem overall

z “Weak scaling”
� execution time remains constant,

as problem size and processor
number are increased in
proportion

� fixed size problem per processor
� also known as “Gustafson

scaling”

T

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

NCAR, 22 July 2008

Strong scaling illus. (1999 Bell Prize)
z Newton-Krylov-Schwarz (NKS) algorithm for compressible and

incompressible Euler and Navier-Stokes flows
z Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes
43min

3072 nodes
2.5min,
226Gf/s

15µs/unknown
70% efficient

NCAR, 22 July 2008

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
(s

ec
on

ds
)

Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

c/o C. Farhat and K. Pierson

z Finite Element Tearing and Interconnection (FETI) algorithm for
solid/shell models

z Used in Sandia applications Salinas, Adagio, Andante

NCAR, 22 July 2008

Decomposition strategies for Lu=f in Ω

z Operator decomposition

z Function space decomposition

z Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U

NCAR, 22 July 2008

Parabolic PDE example
z Continuous

z Semi-discrete in time

z Spatial discretization

fu
t

=∇−
∂
∂)(2

fuuyxh
kk II +=++ +)()1()](2

1[ττ LL

fkuku
II +∇− =+)()1()(2

ττ

IL
IL

⊗

⊗

=

=

{-1,2,-1}
{-1,2,-1}

tridiag
tridiag

y

x

NCAR, 22 July 2008

Parabolic PDE example

IL ⊗= {-1,2,-1}tridiagy

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−
−

−−
−

−
−−

−

=

21
121

12
21
121

12
21
121

12

xL

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

−
−

−
−

−
−

−
−

=

2
2

2

1
1

1
1

1
1

2
2

2

1
1

1
1

1
1

2
2

2

yL

{-1,2,-1}tridiag⊗=ILx

(suppose both matrices are 3×3)

NCAR, 22 July 2008

Parabolic PDE example

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−
−

−−
−

−
−−

−

=

21
121

12
21
121

12
21
121

12

xL

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

−
−

−
−

−
−

−
−

=

2
2

2

1
1

1
1

1
1

2
2

2

1
1

1
1

1
1

2
2

2

yL

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−

−
−

−
−

−
−

−
−−

−

−
−

−
−

−
−

−
−−

−

=+

33

23

13
32

22

12
31

21

11

41
141

14

1
1

1
1

1
1

41
141

14

1
1

1
1

1
1

41
141

14

)(

u
u
u
u
u
u
u
u
u

uyx LL

u11 u21

u33

u12

NCAR, 22 July 2008

Operator decomposition

z Consider ADI
fuyux

kk II +−=+ +)()2/1(][][2/2/ LL ττ

fuxuy
kk II +−=+ ++)2/1()1(][][2/2/ LL ττ

z Iteration matrix consists of four multiplicative
substeps per timestep
� two sparse matrix-vector multiplies
� two sets of unidirectional bandsolves

z Parallelism within each substep
z But global data exchanges between bandsolve substeps

NCAR, 22 July 2008

Function space decomposition

z Consider a spectral Galerkin method
),()(),,(

1
yxtatyxu j

N

j
j Φ=∑

=

Nifuu iiidt
d ,...,1),,(),(),(=Φ+Φ=Φ L

Nifa ijjijdt
da

jij
j ,...,1),,(),(),(=Φ+ΦΦ∑=ΦΦ∑ L

fMKaMdt
da 11 −− +=

z Method-of-lines system of ODEs
z Perhaps are diagonal

matrices
z Parallelism across spectral index
z But global data exchanges to transform back to

physical variables at each step

)],[()],,[(ijij KM ΦΦ≡ΦΦ≡ L

NCAR, 22 July 2008

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

NCAR, 22 July 2008

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

NCAR, 22 July 2008

Digression for notation’s sake
z We need a convenient notation for

mapping vectors (representing
discrete samples of a continuous
field) from full domain to subdomain
and back

1
3

1

6

5

4

3

2

1

1 00
00

01
00

00
01

u
x
x

x
x
x
x
x
x

uR ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0

0

00
00
00
10
00
01

3

1

3

1
11

x

x

x
x

uR T

x1
x2

x3

x4

x5

x6

u1

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

01
00

00
01

1R
z Let Ri be a Boolean operator

that extracts the elements of
the ith subdomain from the
global vector

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00
00
00
10
00
01

1
TR

z Then Ri
T maps the elements

of the ith subdomain back
into the global vector,
padding with zeros

NCAR, 22 July 2008

Schwarz domain decomposition method

z Consider restriction and extension
operators for subdomains, ,
and for possible coarse grid,

z Replace discretized with

z Solve by a Krylov method
z Matrix-vector multiplies with

� parallelism on each subdomain
� nearest-neighbor exchanges, global reductions
� possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

NCAR, 22 July 2008

Krylov bases for sparse systems

z E.g., conjugate gradients (CG) for symmetric, positive definite
systems, and generalized minimal residual (GMRES) for
nonsymmetry or indefiniteness

z Krylov iteration is an algebraic projection method for converting
a high-dimensional linear system into a lower-dimensional linear
system

AVWH T≡
=

=

bAx =
=

bWg T=

=

Vyx = =
gHy =

NCAR, 22 July 2008

Remember this formula of Schwarz …

i
T
ii

T
ii RARRRB 11)(−− ∑=

For a “good” approximation, B-1, to A-1:

NCAR, 22 July 2008

Now, let’s compare!

z Operator decomposition (ADI)
� natural row-based assignment requires global all-to-

all, bulk data exchanges in each step (for transpose)

z Function space decomposition (Fourier)
� Natural mode-based assignment requires global all-to-

all, bulk data exchanges in each step (for transform)

z Domain decomposition (Schwarz)
� Natural domain-based assignment requires local

surface data exchanges, global reductions, and
optional small global problem

(Of course, domain decomposition can be interpreted
as a special operator or function space decomposition)

NCAR, 22 July 2008

Schwarz subspace decomposition

NCAR, 22 July 2008

Schwarz subspace decomposition

NCAR, 22 July 2008

Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

z Decomposition of computation in tasks
z Assignment of tasks to processes
z Orchestration of data access, communication, synchronization
z Mapping processes to processors

c/o D. E. Culler, Berkeley

NCAR, 22 July 2008

Krylov-Schwarz parallelization summary
z Decomposition into concurrent tasks

� by domain

z Assignment of tasks to processes
� typically one subdomain per process

z Orchestration of communication between processes
� to perform sparse matvec – near neighbor communication
� to perform subdomain solve – nothing
� to build Krylov basis – global inner products
� to construct best fit solution – global sparse solve (redundantly)

z Mapping of processes to processors
� typically one process per processor

NCAR, 22 July 2008

Krylov-Schwarz kernel in parallel

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

What happens if, for instance, in this
(schematicized) iteration, arithmetic
speed is doubled, scalar all-gather is
quartered, and local scatter is cut by
one-third? Each phase is
considered separately. Answer is to
the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

NCAR, 22 July 2008

Krylov-Schwarz compelling in serial, too
z As successive workingsets “drop” into a level of memory,

capacity (and with effort conflict) misses disappear, leaving
only compulsory misses, reducing demand on main memory
bandwidth

z Cache size is not easily manipulated, but domain size is

Traffic decreases as
cache gets bigger or
subdomains get smaller

NCAR, 22 July 2008

Estimating scalability of stencil computations
z Given complexity estimates of the leading terms of:

� the concurrent computation (per iteration phase)
� the concurrent communication
� the synchronization frequency

z And a bulk synchronous model of the architecture including:
� internode communication (network topology and protocol reflecting horizontal

memory structure)
� on-node computation (effective performance parameters including vertical

memory structure)

z One can estimate optimal concurrency and optimal execution
time
� on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)
� simply differentiate time estimate in terms of (N,P) with respect to P, equate to

zero and solve for P in terms of N

NCAR, 22 July 2008

Estimating 3D stencil costs (per iteration)

z grid points in each
direction n, total work
N=O(n3)

z processors in each
direction p, total procs
P=O(p3)

z memory per node
requirements O(N/P)

z concurrent execution time per
iteration A n3/p3

z grid points on side of each
processor subdomain n/p

z Concurrent neighbor commun.
time per iteration B n2/p2

z cost of global reductions in each
iteration C log p or C p(1/d)

� C includes synchronization
frequency

z same dimensionless units for
measuring A, B, C
� e.g., cost of scalar floating point

multiply-add

NCAR, 22 July 2008

3D stencil computation illustration
Rich local network, tree-based global reductions

z total wall-clock time per iteration

z for optimal p, , or

or (with),

z without “speeddown,” p can grow with n
z in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T

,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟
⎠
⎞

⎜
⎝
⎛=

3
1

3

NCAR, 22 July 2008

3D stencil computation illustration
Rich local network, tree-based global reductions

z optimal running time

where

z limit of infinite neighbor bandwidth, zero neighbor latency ()

(This analysis is on a per iteration basis; complete analysis
multiplies this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(23 nCBAnpnT opt ρ
ρρ

++=

[] [] ⎟
⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθρ
C
A

0→B

⎥⎦
⎤

⎢⎣
⎡ ++= .log

3
1log))(,(const

C
AnCnpnT opt

NCAR, 22 July 2008

z With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:
� optimal number of processors scales linearly with

problem size

z With 3D torus-based global reductions and
scalable nearest neighbor hardware:
� optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

z With common network bus (heavy
contention):
� optimal number of processors scales as one-fourth

power of problem size (not “scalable”)

Scalability results for DD stencil computations

NCAR, 22 July 2008

PDE varieties and complexities

z Evolution (time hyperbolic, time parabolic)

z Equilibrium (elliptic, spatially hyperbolic or
parabolic)

z Mixed, varying by region
z Mixed, of multiple type

(e.g., parabolic with elliptic constraint)

KK =∇•⋅∇−•
∂
∂

=•⋅∇+•
∂
∂)()(,))(()(α

t
f

t

K=∇•−•⋅∇)(αU

NCAR, 22 July 2008

Explicit PDE solvers

z Concurrency is pointwise, O(N)
z Comm.-to-Comp. ratio is surface-to-volume, O((N/P)-1/3)
z Communication range is nearest-neighbor, except for

time-step computation
z Synchronization frequency is once per step, O((N/P)-1)
z Storage per point is low
z Load balance is straightforward for static quasi-uniform

grids
z Grid adaptivity (together with temporal stability

limitation) makes load balance nontrivial

)u(uu 11 −
•

− Δ−= llll ft

NCAR, 22 July 2008

Domain-decomposed implicit PDE solvers

z Concurrency is pointwise, O(N), or subdomainwise, O(P)
z Comm.-to-Comp. ratio still mainly surface-to-volume,

O((N/P)-1/3)
z Communication still mainly nearest-neighbor, but

nonlocal communication arises from conjugation, norms,
coarse grid problems

z Synchronization frequency often more than once per grid-
sweep, up to Krylov dimension, O(K(N/P)-1)

z Storage per point is higher, by factor of O(K)

z Load balance issues the same as for explicit

∞→Δ
Δ

=+
Δ

− lt
t

f
t l

l
l

l

l ,

1u)u(u

NCAR, 22 July 2008

Resource scaling for PDEs
z For 3D problems, work is proportional to four-thirds power

of memory, because
� for equilibrium problems, work scales with problem size times

number of iteration steps -- proportional to resolution in single
spatial dimension

� for evolutionary problems, work scales with problems size times
number of time steps -- CFL arguments place latter on order of
spatial resolution, as well

z Proportionality constant can be adjusted over a very wide
range by both discretization (high-order implies more work
per point and per memory transfer) and by algorithmic
tuning

z Machines designed for PDEs can be “memory-thin”
z If frequent time frames are to be captured, other resources -

- disk capacity and I/O rates -- must both scale linearly with
work, more stringently than for memory.

NCAR, 22 July 2008

Factoring convergence rate into estimates

z In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

z Krylov-Schwarz iterative methods typically converge in a
number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system

NCAR, 22 July 2008

Where do these results come from?
z Point Jacobi result is well known (see any book on the

numerical analysis of elliptic problems)
z Subdomain Jacobi result has interesting history

� Was derived independently from functional analysis, linear algebra, and
graph theory

z Schwarz theory is neatly and abstractly summarized in Section
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli &
Widlund (2004)
� condition number, κ ≤ ω [1+ρ(ε)] C0

2

� C0
2 is a splitting constant for the subspaces of the decomposition

� ρ(ε) is a measure of the orthogonality of the subspaces
� ω is a measure of the approximation properties of the subspace solvers

(can be unity for exact subdomain solves)
� These properties are estimated for different subspaces, different

operators, and different subspace solvers and the “crank” is turned

NCAR, 22 July 2008

Comments on the Schwarz results
z Original basic Schwarz estimates were for:

� self-adjoint elliptic operators
� positive definite operators
� exact subdomain solves,
� two-way overlapping with
� generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

z Subsequently extended to (within limits):
� nonself-adjointness (e.g, convection)
� indefiniteness (e.g., wave Helmholtz)
� inexact subdomain solves
� one-way overlap communication (“restricted additive Schwarz”)
� small overlap

T
ii RR ,

1−
iA

NCAR, 22 July 2008

Comments on the Schwarz results, cont.

z Theory still requires “sufficiently fine” coarse mesh
� However, coarse space need not be nested in the fine space or in the

decomposition into subdomains

z Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

z Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:
� standard Schwarz Dirichlet boundary conditions can lead to

undamped resonances within subdomains,
� remedy involves Robin-type transmission boundary conditions

on subdomain boundaries,

0=Γu

0)/(=∂∂+ Γnuu α

— Yogi Berra

NCAR, 22 July 2008

1 proc

Illustration of 1-level vs. 2-level tradeoff

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines
on slice plane, velocity
iso-surfaces and
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse
Solve

2 – Level DD
Approx. Coarse
Solve

1 – Level
DD3D Results

512 procs

Total Unknowns

A
vg

. I
te

ra
tio

ns
 p

er
 N

ew
to

n
St

ep

Thermal Convection
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro

NCAR, 22 July 2008

“Unreasonable effectiveness” of Schwarz
z When does the sum of partial inverses equal the

inverse of the sums? When the decomposition is right!

z Good decompositions are a compromise between
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let be a complete set of orthonormal row
eigenvectors for A : or

ii
T

ii rarA Σ=
Then

i
T

ii
T

iiii
T

ii rArrrrarA 111)(−−− Σ=Σ=
and

— the Schwarz formula!

NCAR, 22 July 2008

“Unreasonable effectiveness” of Schwarz, cont.

z Forward Poisson operator is localized and sparse
z Inverse operator is locally concentrated, but dense
z A coarse grid is necessary (and sufficient, for good

conditioning) to represent the coupling between a field
point and its forcing coming from nonlocal regions

Delta function, δ(x) A δ(x) A-1 δ(x)

NCAR, 22 July 2008

“Unreasonable effectiveness” of Schwarz, cont.

z Green’s functions for the “good Helmholtz” operator
on the unit interval, shown with four increasing
diagonal shifts, for ξ = 0.5

z It is intuitively clear why the diagonally dominant
case is easy to precondition without a coarse grid

z This corresponds to the implicitly differenced
parabolic system, and arises commonly in practice

[-∇2 + k2] G(x, ξ) = 0

NCAR, 22 July 2008

Schur complement substructuring
z Given a partition

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii

Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

z Properties of the Schur complement:
� smaller than original A, but generally dense
� expensive to form, to store, to factor, and to solve

� better conditioned than original A, for which κ(A)=O(h-2)
� for a single interface, κ(S)=O(h-1)

z Therefore, solve iteratively, with action of S on each Krylov
vector

Γ

gSu =Γ

z Condense:

NCAR, 22 July 2008

Schur preconditioning
z Note the factorization of the system matrix

z Hence a perfect preconditioner is
111

1 0
0

−

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

S
AAI

A
i

iiiii

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= Γ

−

Γ S
AAI

IA
A

A iii

i

ii

0
0 1

⎥
⎦

⎤
⎢
⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡ −
=

−
Γ

−

−

−
Γ

−

IAA
A

S
SAAI

iii

iiiii
1

1

1

11 0
0

NCAR, 22 July 2008

Schur preconditioning
z Let M-1 be any good preconditioner for S
z Let

z Then B-1 is a good preconditioner for A, for recall

111
1 0~

0

~ −

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

M
AAIB

i

iiiii

Γ

111
1 0

0

−

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

S
AAI

A
i

iiiii

NCAR, 22 July 2008

Schur preconditioning

z So, instead of , use full system

z Here, solves with may be done approximately
since all degrees of freedom are retained

z Once this simple block decomposition is understood,
everything boils down to two more profound
questions:
� How to approximate S cheaply

� How should the relative quality of M and compare

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Γ

−

ΓΓΓΓ

Γ−

f
f

B
u
u

AA
AA

B ii

i

iii 11

iiA

gMSuM 11 −
Γ

− =

iiA~

NCAR, 22 July 2008

Schur preconditioning

z How to approximate S cheaply?
� Many techniques for a single interface
� Factorizations of narrow band approximations
� Spectral (FFT-implementable) decompositions
� Algebraic “probing” of a specified sparsity pattern for

inverse

z For separator sets more complicated than a single
interface, we componentize, creating the
preconditioner of the union from the sum of
preconditioners of the individual pieces

NCAR, 22 July 2008

Schwarz-on-Schur

z Beyond a simple interface, preconditioning the Schur
complement is complex in and of itself; Schwarz is
used on the reduced problem

z Neumann-Neumann

z Balancing Neumann-Neumann
))()((1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

z Numerous other variants allow inexact subdomain solves,
combining additive Schwarz-like preconditioning of the
separator set components with inexact subdomain
solves on the subdomains

NCAR, 22 July 2008

z As an illustration of the algorithmic structure, we
consider the 2D Bramble-Pasciak-Schatz (1984)
preconditioner for the case of many subdomains

Schwarz-on-Schur

NCAR, 22 July 2008

⎥
⎦

⎤
⎢
⎣

⎡
=

VV
T
EV

EVEE

SS
SS

S

)()(11 −−= hHOSκ
)()(1−= hOSκ

z For this case , which is not as
good as the single interface case, for which

z The Schur complement has the block structure

for which the following block diagonal preconditioner
improves conditioning only to

z Note that we can write M-1 equivalently as

Schwarz-on-Schur

jjjjiiii Vj VV
T
VEi EE

T
E RSRRSRM ∑∑ −−− += 111

⎥
⎦

⎤
⎢
⎣

⎡
=

−

−
−

1

1
1

0
0

VV

EE

S
S

M

))(log(122 −− HhHO

NCAR, 22 July 2008

))(log1()(121 −− += HhCSMκ

z If we replace the diagonal vertex term of M-1 with a
coarse grid operator

then

where C may still retain dependencies on other bad
parameters, such as jumps in the diffusion coefficients

z The edge term can be replaced with cheaper components
z There are numerous variations in 2D and 3D that

conquer various additional weaknesses

Schwarz-on-Schur

HH
T
HEi EE

T
E RARRSRM

iiii

111 −−− += ∑

NCAR, 22 July 2008

Schwarz polynomials

z Polynomials of Schwarz projections that are combinations of
additive and multiplicative may be appropriate for certain
implementations

z We may solve the fine subdomains concurrently and follow with a
coarse grid (redundantly/cooperatively)

)(1 AufBuu ii −Σ+← −

)(1
0 AufBuu −+← −

))((11
0

1
0

1 −−−− Σ−+= ii BABIBB
z This leads to algorithm “Hybrid II” in S-B-G’96:

z Convenient for “SPMD” (single prog/multiple data)

NCAR, 22 July 2008

Onward to nonlinearity
z Linear versus nonlinear problems

� Solving linear algebraic problems often constitutes 90% of
the running time of a large simulation

� The nonlinearity is often a fairly straightforward outer loop,
in that it introduces no new types of messages or
synchronizations, and has overall many fewer
synchronizations than the preconditioned Krylov method or
other linear solver inside it

z We can wrap Newton, Picard, fixed-point or other
iterations outside, linearize, and apply what we know

z We consider both Newton-outside and Newton-inside
methods

NCAR, 22 July 2008

Newton-Krylov-Schur-Schwarz:
a solver “workhorse”

Newton
nonlinear solver
asymptotically

quadratic

0)(')()(=+≈ uuFuFuF cc δ
uuu c δλ+=

Krylov
accelerator

spectrally adaptive

FuJ −=δ
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

≡∈ L

δ

Schur
preconditioner
parallelizable
by structure

FBuJB 11 −− −=δ

Schwarz
preconditioner
parallelizable

by domain

i
T
ii

T
ii RARRRA 11)(~ −− ∑=

1
1

1

0

~0~ −

Γ
−

Γ

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

M
AAI

IA
AB iii

i

ii

NCAR, 22 July 2008

Newton’s Method
z Given and iterate

we wish to pick such that

where
z Neglecting higher-order terms, we get

where is the Jacobian matrix,
generally large, sparse, and ill-conditioned for PDEs

z In practice, require
z In practice, set where is selected

to minimize

nnFuF ℜ→ℜ= :,0)(0u
1+ku

0)()()('1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+

NCAR, 22 July 2008

Krylov Method
z Given and iterate , we

wish to generate a basis for
() and a set of coefficients
such that is a best fit in the sense that
minimizes

z Krylov methods are algebraic Petrov-Galerkin
methods that define a complementary basis

so that
may be solved for y

z In practice k << n and the bases are grown from seed
vector via recursive multiplication
by and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

x
ky ℜ∈

|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)(=− bAVyW T

bAxr −= 00

Vyx ≈

A

NCAR, 22 July 2008

Newton-Krylov-Schwarz

for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients
check linear convergence

} // End of linear solver
perform DAXPY update
check nonlinear convergence

} // End of nonlinear loop

Newton
loop

Krylov
loop

NCAR, 22 July 2008

Jacobian-free Newton-Krylov
z In the Jacobian-Free Newton-Krylov (JFNK) method, a

Krylov method solves the linear Newton correction
equation, requiring Jacobian-vector products

z These are approximated by the Fréchet derivatives

(where is chosen with a fine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

z One builds the Krylov space on a true F’(u) (to within
numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε

NCAR, 22 July 2008

How to accommodate preconditioning
z Krylov iteration is expensive in memory and in

function evaluations, so subspace dimension k must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

z Given the ability to apply the action of to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11)(−− =
1−B

NCAR, 22 July 2008

Philosophy of Jacobian-free NK
z To evaluate the linear residual, we use the true F’(u) , giving a

true Newton step and asymptotic quadratic Newton
convergence

z To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:
� Jacobian blocks decomposed for parallelism (Schwarz)
� Jacobian of lower-order discretization
� Jacobian with “lagged” values for expensive terms
� Jacobian stored in lower precision
� Jacobian of related discretization
� operator-split Jacobians
� physics-based preconditioning

NCAR, 22 July 2008

Nonlinear Schwarz preconditioning
z Nonlinear Schwarz has Newton both inside and

outside and is fundamentally Jacobian-free
z It replaces with a new nonlinear system

possessing the same root,
z Define a correction to the partition (e.g.,

subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the
components of the partition

z Then sum the corrections: to get
an implicit function of u

0)(=uF
0)(=Φ u

thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

NCAR, 22 July 2008

Nonlinear Schwarz – picture

u

F(u)

Ri

1
1

1
1

0 0

Riu RiF

NCAR, 22 July 2008

Nonlinear Schwarz – picture

u

F(u)

Ri

Rj

1
1

1
1

0 0

1
1

1
1

0 0 RiFRiu

RjuRjF

NCAR, 22 July 2008

Nonlinear Schwarz – picture

u

F(u)

Ri

Rj

1
1

1
1

0 0

1
1

1
1

0 0 Riu RiF

RjuRjF

Fi’(ui)

RiF+RjF

δiu+δju

NCAR, 22 July 2008

Nonlinear Schwarz, cont.
z It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then and have the same unique
root

z To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :
� The residual
� The Jacobian-vector product

z Remarkably, (Cai-Keyes, 2000) it can be shown that

where and
z All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

NCAR, 22 July 2008

Driven cavity in velocity-vorticity coords

02 =
∂
∂

−∇−
y

u ω

02 =
∂
∂

+∇−
x

v ω

0Gr2 =
∂
∂

−
∂
∂

+
∂
∂

+∇−
x
T

y
v

x
u ωωω

0)(Pr2 =
∂
∂

+
∂
∂

+∇−
y
Tv

x
TuT

x-velocity

y-velocity

vorticity

internal energy

hotcold

NCAR, 22 July 2008

Experimental example of nonlinear Schwarz

Vanilla Newton’s method Nonlinear Schwarz

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

NCAR, 22 July 2008

Multiphysics coupling: partial elimination
z Consider system partitioned by physics as

z Can formally solve for in

z Then second equation is
z Jacobian

can be applied to a vector in matrix-free manner

⎩
⎨
⎧

=
=

0),(
0),(

212

211

uuF
uuF

0)(=uF

0),(211 =uuF

)(21 uGu ≡
0)),((222 =uuGF

2

2

21

2

2

2

u
F

u
G

u
F

du
dF

∂
∂

+
∂
∂

∂
∂

=

1u

NCAR, 22 July 2008

Multiphysics coupling: nonlinear GS

z In previous notation, given initial iterate
z For k=1, 2, …, until convergence, do

� Solve for v in
� Solve for w in

z Then
0),(2 =wvF

{ }0
2

0
1 ,uu

0),(1
21 =−kuvF

{ } { }wvuu kk ,, 21 =

NCAR, 22 July 2008

Multiphysics coupling: nonlinear Schwarz

z Given initial iterate
z For k=1, 2, …, until convergence, do

� Define by
� Define by

z Then solve in matrix-free manner

z Jacobian:

z Finally { } { }wvuu kk ,, 21 =

{ }0
2

0
1 ,uu

0),(1
21

1
11 =+ −− kk uuuF δ1211),(uuuG δ≡

0),(2
1

2
1

12 =+−− uuuF kk δ2212),(uuuG δ≡

⎩
⎨
⎧

=
=

0),(
0),(

2

1

vuG
vuG

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

≈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

−

−

I
u
F

v
F

v
F

u
FI

v
G

u
G

v
G

u
G

2
1

2

1
1

1

22

11

NCAR, 22 July 2008

Constrained optimization w/Lagrangian
z Consider Newton’s method for solving the nonlinear

rootfinding problem derived from the necessary
conditions for constrained optimization

z Constraint
z Objective
z Lagrangian
z Form the gradient of the Lagrangian with respect to

each of x, u, and λ:

NMN cuxuxc ℜ∈ℜ∈ℜ∈= ;;;0),(
ℜ∈fuxfu ;),(min

NT uxcuxf ℜ∈+ λλ ;),(),(

0),(),(=+ uxcuxf xx
Tλ

0),(=uxc
0),(),(=+ uxcuxf uu

Tλ

NCAR, 22 July 2008

Newton on first-order conditions
z Equality constrained optimization leads to the KKT

system for states x , designs u , and multipliers λ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c
g
g

u
x

JJ
JWW
JWW

u

x

ux

T
uuuux

T
x

T
uxxx

δλ
δ
δ

0

z Then

z Newton Reduced SQP solves the Schur complement
system H δu = g , where H is the reduced Hessian

cJWWJJgJJgg xuxxx
T

x
T
ux

T
x

T
uu

1)(−−− −−+−=
uxuxxx

T
x

T
u

T
ux

T
x

T
uuu JJWWJJWJJWH 1)(−−− −−−=

uJcxJ ux δδ −−=
uWxWgJ T

uxxxx
T
x δδδλ −−−=

NCAR, 22 July 2008

RSQP when constraints are PDEs

z Problems
� is the Jacobian of a PDE ⇒ huge!
� involve Hessians of objective and constraints ⇒ second

derivatives and huge

� H is unreasonable to form, store, or invert

xJ
αβW

z Proposed solution: Schwarz inside Schur!
� form approximate inverse action of state Jacobian and its

transpose in parallel by Schwarz/multilevel methods
� form forward action of Hessians by automatic differentiation;

exact action needed only on vectors (JFNK)
� do not eliminate exactly; use Schur preconditioning on full

system

NCAR, 22 July 2008

State of the art
z Domain decomposition is the dominant paradigm in contemporary

terascale PDE simulation
z Several freely available software toolkits exist, and successfully scale

to thousands of tightly coupled processors for problems on quasi-
static meshes

z Concerted efforts underway to make elements of these toolkits
interoperate, and to allow expression of the best methods, which tend
to be modular, hierarchical, recursive, and above all — adaptive!

z Many challenges loom at the “next scale” of computation
z Implementation of domain decomposition methods on parallel

computers has inspired many useful variants of domain
decomposition methods

z The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

NCAR, 22 July 2008

More on domain decomposition
z 19th Conference

� 9-14 August 2009, Hunan (Xiangtan University)

z Web home
� ddm.org
� Freely downloadable papers, bibtex resources, scientific

contacts

NCAR, 22 July 2008

Closing inspiration

“… at this very moment the search is on – every numerical analyst
has a favorite preconditioner, and you have a perfect chance to
find a better one.”

- Gil Strang (1986)

