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Opening inspiration

“… at this very moment the search is on – every numerical analyst 
has a favorite preconditioner, and you have a perfect chance to 
find a better one.”

- Gil Strang (1986)
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Definition and motivation

z Domain decomposition (DD) is a “divide and 
conquer” technique for arriving at the solution of 
problem defined over a domain from the solution of 
related problems posed on subdomains

z Motivating assumption #1: the solution of the 
subproblems is qualitatively or quantitatively 
“easier” than the original

z Motivating assumption #2: the original problem does 
not fit into the available memory space

z Motivating assumption #3 (parallel context): the 
subproblems can be solved with some concurrency
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Remarks on definition

z “Divide and conquer” is not a fully satisfactory 
description
� “divide, conquer, and combine” is better
� combination is often through iterative means

z True “divide-and-conquer” (only) algorithms are 
rare in computing (unfortunately)

z It might be preferable to focus on “subdomain 
composition” rather than “domain decomposition”

We often think we know all about “two” because two is “one and 
one”.  We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)
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Remarks on definition

z Domain decomposition has generic and specific 
senses within the universe of parallel algorithms
� generic sense: any data decomposition (considered in 

contrast to task decomposition)
� specific sense: the domain is the domain of definition of an 

operator equation (differential, integral, algebraic)

z In a generic sense the process of constructing a 
parallel program consists of
� Decomposition into tasks
� Assignment of tasks to processes
� Orchestration of processes

�Communication and synchronization

� Mapping of processes to processors
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Divide, conquer, and combine –
as natural as breathing

z Most of the area of the lung 
is at these smallest scales, 
where gaseous exchange 
(“conquer”) occurs 
efficiently

z Most of the volume of the 
lung just transports air and 
blood down (“divide” phase) 
to microstructures, where 
they mix

z The oxygenated blood and 
deoxygenated air then 
“recombine” for output
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Subproblem structure

z The subdomains may be of the same or 
different dimensionality as the original

2D
2D

2D

1D
0D
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Plan of presentation
z Imperative of domain decomposition (DD) for 

terascale computing (and beyond)
z Basic DD algorithmic concepts

� Schwarz
� Schur
� Schwarz-Schur combinations

z Basic DD convergence and scaling properties
z En route:

� mention some “high watermarks” for DD-based 
simulations
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Caveat
z This talk is Part I of a three-hour short course sometimes done 

“tag-team” with Olof Widlund, NYU
z Part II contains material on the very successful class of 

discontinuous domain decomposition methods known as 
mortar and “FETI” (finite element tearing and 
interconnection), not covered in today’s talk (though invented 
here in Boulder ☺)

z Also not covered here are recent interesting developments in 
optimized Schwarz methods

z The speakers likes these methods and believes they are 
important in practice; their omission is purely a matter of 
scope

z However, software for them is not as readily available as the 
software to be discussed in connection with Schwarz methods 
here



NCAR, 22 July 2008

Prime sources for domain decomposition

1996 1997 2001 2004 2008
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Other sources for domain decomposition

+ DDM.ORG and other proceedings volumes, 1988-2008

1992
1994 1995 2006

XVI

Olof Widlund & David Keyes

55
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Algorithmic requirements from architecture

z Must run on physically distributed memory units 
connected by message-passing network, each serving 
one or more processors with multiple levels of cache 

T3E

“horizontal” aspects “vertical” aspects
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Building platforms is the “easy” part

z Algorithms must be
� highly concurrent and straightforward to load balance
� latency tolerant
� cache friendly (good temporal and spatial locality)
� highly scalable (in the sense of convergence)

z Domain decomposition “natural” for all of these

z Domain decomposition also “natural”
for software engineering

z Fortunate that its theory was built 
in advance of requirements!
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The earliest DD paper?

What Schwarz proposed…

Solve PDE in circle 
with BC taken from 
interior of square

Solve PDE in square 
with BC taken from 
interior of circle

A
nd iterate!
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Rationale
z Convenient analytic means (separation of variables) are 

available for the regular problems in the subdomains, 
but not for the irregular “keyhole” problem defined by 
their union

z Schwarz iteration defines a functional map from the 
values defined along (either) artificial interior boundary 
segment completing a subdomain (arc or segments) to an 
updated set of values

z A contraction map is derived for the error
z Rate of convergence is not necessarily rapid – this was 

not a concern of Schwarz
z Subproblems are not solved concurrently – neither was 

this Schwarz’ concern
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Other early DD papers
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Rationale

z For Kron: direct Gaussian elimination has 
superlinear complexity
� union of subproblems and the connecting problem 

(each also superlinear) could be solved in fewer 
overall operations than one large problem

z For Przemieniecki: full airplane structural 
analysis would not fit in memory of available 
computers
� individual subproblems fit in memory
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Rationale

(N/P) < M

z Let problem size be N, number of subdomains 
be P, and memory capacity be M

z Let problem solution complexity be  Na, (a≥1)
z Then subproblem solution complexity is  (N/P)a

z Let the cost of connecting the subproblems be 
c(N,P)

z Kron wins if

z Przemieniecki wins if 

P (N/P)a + c(N,P) < Na

or   c(N,P) < Na (1-P1-a)

NB: Kron 
does not win 

directly if 
a=1 !
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Przemieniecki’s prediction (1963)

“From past experiences with the analysis of aircraft structures, it is 
evident that some form of structural partitioning is usually necessary, 
either because different methods of analysis are used on different 
structural components or because of the limitations imposed by 
digital computers.  Even when the next generation of faster and 
larger digital computers becomes a well-established tool for the 
analysis of aircraft structures, it seems rather doubtful, because of 
the large number of unknowns, that the substructure displacement
method of analysis would be wholly superseded by an overall 
analysis carried out on the complete structure.”
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Contemporary interest

z Goal is algorithmic scalability: 
fill up memory of arbitrarily large machines to 
increase resolution, while preserving nearly constant* 
running times with respect to proportionally smaller 
problem on one processor

*at worst logarithmically growing
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Two definitions of scalability

z “Strong scaling”
� execution time decreases in 

inverse proportion to the 
number of processors

� fixed size problem overall

z “Weak scaling”
� execution time remains constant, 

as problem size and processor 
number are increased in 
proportion

� fixed size problem per processor
� also known as “Gustafson 

scaling”

T  

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0
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Strong scaling illus. (1999 Bell Prize)
z Newton-Krylov-Schwarz (NKS) algorithm for compressible and 

incompressible Euler and Navier-Stokes flows 
z Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes 
43min

3072 nodes 
2.5min, 
226Gf/s

15µs/unknown 
70% efficient
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c/o C. Farhat and K. Pierson

z Finite Element Tearing and Interconnection (FETI) algorithm for 
solid/shell models

z Used in Sandia applications Salinas, Adagio, Andante
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Decomposition strategies for Lu=f  in Ω

z Operator decomposition

z Function space decomposition

z Domain decomposition
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Parabolic PDE example
z Continuous

z Semi-discrete in time

z Spatial discretization
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Parabolic PDE example

IL ⊗= {-1,2,-1}tridiagy
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Parabolic PDE example
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Operator decomposition

z Consider ADI
fuyux

kk II +−=+ + )()2/1( ][][ 2/2/ LL ττ

fuxuy
kk II +−=+ ++ )2/1()1( ][][ 2/2/ LL ττ

z Iteration matrix consists of four multiplicative 
substeps per timestep
� two sparse matrix-vector multiplies
� two sets of unidirectional bandsolves

z Parallelism within each substep
z But global data exchanges between bandsolve substeps
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Function space decomposition

z Consider a spectral Galerkin method
),()(),,(
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z Method-of-lines system of ODEs
z Perhaps                                                        are diagonal 

matrices 
z Parallelism across spectral index
z But global data exchanges to transform back to 

physical variables at each step
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SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”
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DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem
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Digression for notation’s sake
z We need a convenient notation for 

mapping vectors (representing 
discrete samples of a continuous 
field) from full domain to subdomain 
and back
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the ith subdomain from the 
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Schwarz domain decomposition method

z Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid,

z Replace discretized                   with

z Solve by a Krylov method
z Matrix-vector multiplies with

� parallelism on each subdomain
� nearest-neighbor exchanges, global reductions
� possible small global system (not needed for parabolic case)
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Krylov bases for sparse systems

z E.g., conjugate gradients (CG) for symmetric, positive definite 
systems, and generalized minimal residual (GMRES) for 
nonsymmetry or indefiniteness 

z Krylov iteration is an algebraic projection method for converting 
a high-dimensional linear system into a lower-dimensional linear 
system

AVWH T≡
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Remember this formula of Schwarz …

i
T
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T
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For  a “good” approximation, B-1, to A-1:
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Now, let’s compare!

z Operator decomposition (ADI)
� natural row-based assignment requires global all-to-

all, bulk data exchanges in each step (for transpose)

z Function space decomposition (Fourier)
� Natural mode-based assignment requires global all-to-

all, bulk data exchanges in each step (for transform)

z Domain decomposition (Schwarz)
� Natural domain-based assignment requires local

surface data exchanges, global reductions, and 
optional small global problem

(Of course, domain decomposition can be interpreted 
as a special operator or function space decomposition)
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Schwarz subspace decomposition
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Schwarz subspace decomposition
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Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

z Decomposition of computation in tasks
z Assignment of tasks to processes
z Orchestration of data access, communication, synchronization
z Mapping processes to processors

c/o D. E. Culler, Berkeley
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Krylov-Schwarz parallelization summary
z Decomposition into concurrent tasks

� by domain

z Assignment of tasks to processes
� typically one subdomain per process

z Orchestration of communication between processes
� to perform sparse matvec – near neighbor communication
� to perform subdomain solve – nothing
� to build Krylov basis – global inner products
� to construct best fit solution – global sparse solve (redundantly)

z Mapping of processes to processors
� typically one process per processor
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Krylov-Schwarz kernel in parallel

local 
scatter

Jac-vec 
multiply

precond 
sweep

daxpy inner     
product

Krylov 
iteration

…

What happens if, for instance, in this 
(schematicized) iteration, arithmetic 
speed is doubled, scalar all-gather is 
quartered, and local scatter is cut by 
one-third?  Each phase is 
considered separately. Answer is to 
the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M
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Krylov-Schwarz compelling in serial, too
z As successive workingsets “drop” into a level of memory, 

capacity (and with effort conflict) misses disappear, leaving 
only compulsory misses, reducing demand on main memory 
bandwidth

z Cache size is not easily manipulated, but domain size is

Traffic decreases as 
cache gets bigger or 
subdomains get smaller
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Estimating scalability of stencil computations 
z Given complexity estimates of the leading terms of:

� the concurrent computation (per iteration phase)
� the concurrent communication
� the synchronization frequency

z And a bulk synchronous model of the architecture including:
� internode communication (network topology and protocol reflecting horizontal 

memory structure)
� on-node computation (effective performance parameters including vertical 

memory structure)

z One can estimate optimal concurrency and optimal execution 
time
� on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)
� simply differentiate time estimate in terms of (N,P) with respect to P, equate to 

zero and solve for P in terms of N
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Estimating 3D stencil costs (per iteration)

z grid points in each 
direction n, total work 
N=O(n3)

z processors in each 
direction p, total procs
P=O(p3)

z memory per node 
requirements O(N/P)

z concurrent execution time per 
iteration A n3/p3

z grid points on side of each 
processor subdomain n/p

z Concurrent neighbor commun. 
time per iteration B n2/p2

z cost of global reductions in each 
iteration  C log p or C p(1/d)

� C includes synchronization 
frequency

z same dimensionless units for 
measuring A, B, C 
� e.g., cost of scalar floating point 

multiply-add
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3D stencil computation illustration
Rich local network, tree-based global reductions

z total wall-clock time per iteration

z for optimal p,            , or  

or (with                        ),

z without “speeddown,” p can grow with n
z in the limit as 
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3D stencil computation illustration 
Rich local network, tree-based global reductions

z optimal running time

where

z limit of infinite neighbor bandwidth, zero neighbor latency (   )

(This analysis is on a per iteration basis; complete analysis 
multiplies this cost by an iteration count estimate that generally 
depends on n and p.)
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z With tree-based (logarithmic) global 
reductions and scalable nearest neighbor 
hardware:
� optimal number of processors scales linearly with 

problem size

z With 3D torus-based global reductions and 
scalable nearest neighbor hardware:
� optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

z With common network bus (heavy 
contention):
� optimal number of processors scales as one-fourth

power of problem size (not “scalable”)

Scalability results for DD stencil computations
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PDE varieties and complexities

z Evolution (time hyperbolic, time parabolic)

z Equilibrium (elliptic, spatially hyperbolic or 
parabolic)

z Mixed, varying by region
z Mixed, of multiple type                                

(e.g., parabolic with elliptic constraint)
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Explicit PDE solvers

z Concurrency is pointwise, O(N)
z Comm.-to-Comp. ratio is surface-to-volume, O((N/P)-1/3)
z Communication range is nearest-neighbor, except for 

time-step computation
z Synchronization frequency is once per step, O((N/P)-1)
z Storage per point is low
z Load balance is straightforward for static quasi-uniform 

grids
z Grid adaptivity (together with temporal stability 

limitation) makes load balance nontrivial

)u(uu 11 −
•

− Δ−= llll ft
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Domain-decomposed implicit PDE solvers

z Concurrency is pointwise, O(N), or subdomainwise, O(P)
z Comm.-to-Comp. ratio still mainly surface-to-volume, 

O((N/P)-1/3)
z Communication still mainly nearest-neighbor, but 

nonlocal communication arises from conjugation, norms, 
coarse grid problems

z Synchronization frequency often more than once per grid-
sweep, up to Krylov dimension, O(K(N/P)-1)

z Storage per point is higher, by factor of O(K)

z Load balance issues the same as for explicit
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Resource scaling for PDEs
z For 3D problems, work is proportional to four-thirds power 

of  memory, because
� for equilibrium problems, work scales with problem size times 

number of iteration steps -- proportional to resolution in single 
spatial dimension

� for evolutionary problems, work scales with problems size times 
number of time steps -- CFL arguments place latter on order of 
spatial resolution, as well

z Proportionality constant can be adjusted over a very wide 
range by both discretization (high-order implies more work 
per point and per memory transfer) and by algorithmic 
tuning

z Machines designed for PDEs can be “memory-thin”
z If frequent time frames are to be captured, other resources -

- disk capacity and I/O rates -- must both scale linearly with 
work, more stringently than for memory.
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Factoring convergence rate into estimates 

z In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

z Krylov-Schwarz iterative methods typically converge in a 
number of iterations that scales as the square-root of the 
condition number of the Schwarz-preconditioned system
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Where do these results come from?
z Point Jacobi result is well known (see any book on the 

numerical analysis of elliptic problems)
z Subdomain Jacobi result has interesting history

� Was derived independently from functional analysis, linear algebra, and 
graph theory

z Schwarz theory is neatly and abstractly summarized in Section 
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli & 
Widlund (2004)
� condition number, κ ≤ ω [1+ρ(ε)] C0

2

� C0
2 is a splitting constant for the subspaces of the decomposition

� ρ(ε) is a measure of the orthogonality of the subspaces
� ω is a measure of the approximation properties of the subspace solvers 

(can be unity for exact subdomain solves)
� These properties are estimated for different subspaces, different 

operators, and different subspace solvers and the “crank” is turned
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Comments on the Schwarz results
z Original basic Schwarz estimates were for:

� self-adjoint elliptic operators
� positive definite operators
� exact subdomain solves, 
� two-way overlapping with 
� generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

z Subsequently extended to (within limits):
� nonself-adjointness (e.g, convection) 
� indefiniteness (e.g., wave Helmholtz) 
� inexact subdomain solves
� one-way overlap communication (“restricted additive Schwarz”)
� small overlap

T
ii RR ,

1−
iA
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Comments on the Schwarz results, cont.

z Theory still requires “sufficiently fine” coarse mesh
� However, coarse space need not be nested in the fine space or in the 

decomposition into subdomains

z Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

z Wave Helmholtz (e.g., acoustics) is delicate at high 
frequency:
� standard Schwarz Dirichlet boundary conditions can lead to 

undamped resonances within subdomains,
� remedy involves Robin-type transmission boundary conditions 

on subdomain boundaries,

0=Γu

0)/( =∂∂+ Γnuu α

— Yogi Berra
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1 proc

Illustration of 1-level vs. 2-level tradeoff

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition 
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver. 
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines 
on slice plane, velocity 
iso-surfaces and 
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse 
Solve

2 – Level DD  
Approx. Coarse 
Solve

1 – Level 
DD3D Results

512 procs

Total Unknowns
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Thermal Convection 
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro
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“Unreasonable effectiveness” of Schwarz
z When does the sum of partial inverses equal the 

inverse of the sums?  When the decomposition is right!

z Good decompositions are a compromise between 
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let        be a complete set of orthonormal row 
eigenvectors for A :                        or

ii
T

ii rarA Σ=
Then

i
T

ii
T

iiii
T

ii rArrrrarA 111 )( −−− Σ=Σ=
and

— the Schwarz formula!
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“Unreasonable effectiveness” of Schwarz, cont.

z Forward Poisson operator is localized and sparse
z Inverse operator is locally concentrated, but dense
z A coarse grid is necessary (and sufficient, for good 

conditioning) to represent the coupling between a field 
point and its forcing coming from nonlocal regions

Delta function, δ(x) A δ(x) A-1 δ(x)
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“Unreasonable effectiveness” of Schwarz, cont.

z Green’s functions for the “good Helmholtz” operator 
on the unit interval, shown with four increasing 
diagonal shifts, for ξ = 0.5

z It is intuitively clear why the diagonally dominant 
case is easy to precondition without a coarse grid

z This corresponds to the implicitly differenced 
parabolic system, and arises commonly in practice

[ -∇2 + k2 ] G(x, ξ) = 0
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Schur complement substructuring
z Given a partition
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z Properties of the Schur complement:
� smaller than original A, but generally dense
� expensive to form, to store, to factor, and to solve

� better conditioned than original A, for which κ(A)=O(h-2)
� for a single interface, κ(S)=O(h-1)

z Therefore, solve iteratively, with action of S on each Krylov 
vector

Γ

gSu =Γ

z Condense:
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Schur preconditioning
z Note the factorization of the system matrix 

z Hence a perfect preconditioner is
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Schur preconditioning
z Let  M-1 be any good preconditioner for  S
z Let                                           

z Then B-1 is a good preconditioner for A, for recall
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Schur preconditioning

z So, instead of                               , use full system 

z Here, solves with       may be done approximately 
since all degrees of freedom are retained

z Once this simple block decomposition is understood, 
everything boils down to two more profound 
questions:
� How to approximate  S cheaply

� How should the relative quality of  M and         compare
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Schur preconditioning

z How to approximate  S cheaply?
� Many techniques for a single interface
� Factorizations of narrow band approximations
� Spectral (FFT-implementable) decompositions
� Algebraic “probing” of a specified sparsity pattern for 

inverse

z For separator sets more complicated than a single 
interface, we componentize, creating the 
preconditioner of the union from the sum of 
preconditioners of the individual pieces
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Schwarz-on-Schur

z Beyond a simple interface, preconditioning the Schur 
complement is complex in and of itself; Schwarz is 
used on the reduced problem

z Neumann-Neumann

z Balancing Neumann-Neumann
))()(( 1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

z Numerous other variants allow inexact subdomain solves, 
combining additive Schwarz-like preconditioning of the 
separator set components with inexact subdomain 
solves on the subdomains
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z As an illustration of the algorithmic structure, we 
consider the 2D Bramble-Pasciak-Schatz (1984) 
preconditioner for the case of many subdomains

Schwarz-on-Schur
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z For this case                                      , which is not as 
good as the single interface case, for which

z The Schur complement has the block structure

for which the following block diagonal preconditioner 
improves conditioning only to 

z Note that we can write M-1 equivalently as

Schwarz-on-Schur
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))(log1()( 121 −− += HhCSMκ

z If we replace the diagonal vertex term of M-1 with a 
coarse grid operator

then

where C may still retain dependencies on other bad 
parameters, such as jumps in the diffusion coefficients

z The edge term can be replaced with cheaper components
z There are numerous variations in 2D and 3D that 

conquer various additional weaknesses

Schwarz-on-Schur

HH
T
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T
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iiii
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Schwarz polynomials

z Polynomials of Schwarz projections that are combinations of 
additive and multiplicative may be appropriate for certain 
implementations

z We may solve the fine subdomains concurrently and follow with a 
coarse grid (redundantly/cooperatively) 

)(1 AufBuu ii −Σ+← −

)(1
0 AufBuu −+← −

))(( 11
0

1
0

1 −−−− Σ−+= ii BABIBB
z This leads to algorithm “Hybrid II” in S-B-G’96:                                       

z Convenient for “SPMD” (single prog/multiple data)
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Onward to nonlinearity
z Linear versus nonlinear problems

� Solving linear algebraic problems often constitutes 90% of 
the running time of a large simulation

� The nonlinearity is often a fairly straightforward outer loop, 
in that it introduces no new types of messages or 
synchronizations, and has overall many fewer 
synchronizations than the preconditioned Krylov method  or 
other linear solver inside it

z We can wrap Newton, Picard, fixed-point or other 
iterations outside, linearize, and apply what we know

z We consider both Newton-outside and Newton-inside 
methods
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Newton-Krylov-Schur-Schwarz: 
a solver “workhorse”

Newton
nonlinear solver
asymptotically 

quadratic
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Newton’s Method
z Given                                                           and iterate      

we wish to pick        such that

where
z Neglecting higher-order terms, we get

where                                   is the Jacobian matrix, 
generally large, sparse, and ill-conditioned for PDEs

z In practice, require
z In practice, set                                     where      is selected 

to minimize         

nnFuF ℜ→ℜ= :,0)( 0u
1+ku

0)()()( '1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([ 1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+
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Krylov Method
z Given                                            and iterate    , we 

wish to generate a basis                                        for       
(                ) and a set of coefficients                    
such that       is a best fit in the sense that                 
minimizes 

z Krylov methods are algebraic Petrov-Galerkin 
methods that define a complementary basis 

so that        
may be solved for y

z In practice  k << n and the bases are grown from seed 
vector                                   via recursive multiplication 
by       and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21
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Newton-Krylov-Schwarz

for (k = 0; k < n_Newton; k++) {
compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients 
check linear convergence

} // End of linear solver
perform DAXPY update 
check nonlinear convergence

} // End of nonlinear loop

Newton 
loop

Krylov 
loop
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Jacobian-free Newton-Krylov
z In the Jacobian-Free Newton-Krylov (JFNK) method, a 

Krylov method solves the linear Newton correction 
equation, requiring Jacobian-vector products

z These are approximated by the Fréchet derivatives

(where       is chosen with a fine balance between 
approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed

z One builds the Krylov space on a true F’(u) (to within 
numerical approximation)

)]()([1)( uFvuFvuJ −+≈ ε
ε
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How to accommodate preconditioning
z Krylov iteration is expensive in memory and in 

function evaluations, so subspace dimension k must be 
kept small in practice, through preconditioning the 
Jacobian with an approximate inverse, so that the 
product matrix has low condition number in

z Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the left, 
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11 )( −− =
1−B
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Philosophy of Jacobian-free NK
z To evaluate the linear residual, we use the true F’(u) , giving a 

true Newton step and asymptotic quadratic Newton 
convergence

z To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics 
in the system and respects the limitations of the parallel 
computer architecture and the cost of various operations:
� Jacobian blocks decomposed for parallelism (Schwarz)
� Jacobian of lower-order discretization
� Jacobian with “lagged” values for expensive terms 
� Jacobian stored in lower precision 
� Jacobian of related discretization 
� operator-split Jacobians 
� physics-based preconditioning
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Nonlinear Schwarz preconditioning
z Nonlinear Schwarz has Newton both inside and 

outside and is fundamentally Jacobian-free
z It replaces                with a new nonlinear system 

possessing the same root, 
z Define a correction            to the     partition (e.g., 

subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the 
components of the     partition

z Then sum the corrections:                            to get 
an implicit function of u
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz – picture
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Nonlinear Schwarz, cont.
z It is simple to prove that if the Jacobian of  F(u) is 

nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root

z To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :
� The residual 
� The Jacobian-vector product

z Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
z All required actions are available in terms of            !
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Driven cavity in velocity-vorticity coords
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Experimental example of nonlinear Schwarz

Vanilla Newton’s method Nonlinear Schwarz

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re
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Multiphysics coupling: partial elimination
z Consider system                partitioned by physics as

z Can formally solve for       in       

z Then second equation is  
z Jacobian

can be applied to a vector in matrix-free manner
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Multiphysics coupling: nonlinear GS

z In previous notation, given initial iterate
z For k=1, 2, …, until convergence, do

� Solve for v in
� Solve for w in

z Then  
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Multiphysics coupling: nonlinear Schwarz

z Given initial iterate
z For k=1, 2, …, until convergence, do

� Define by
� Define by

z Then solve                               in matrix-free manner

z Jacobian:
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Constrained optimization w/Lagrangian
z Consider Newton’s method for solving the nonlinear 

rootfinding problem derived from the necessary 
conditions  for constrained optimization

z Constraint
z Objective
z Lagrangian
z Form the gradient of the Lagrangian with respect to 

each of x, u, and λ:
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Newton on first-order conditions
z Equality constrained optimization leads to the KKT 

system for states x , designs u , and multipliers λ
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z Then

z Newton Reduced SQP solves the Schur complement 
system  H δu = g , where H is the reduced Hessian

cJWWJJgJJgg xuxxx
T

x
T
ux

T
x

T
uu

1)( −−− −−+−=
uxuxxx

T
x

T
u

T
ux

T
x

T
uuu JJWWJJWJJWH 1)( −−− −−−=

uJcxJ ux δδ −−=
uWxWgJ T

uxxxx
T
x δδδλ −−−=



NCAR, 22 July 2008

RSQP when constraints are PDEs

z Problems
� is the Jacobian of a PDE ⇒ huge!
� involve Hessians of objective and constraints ⇒ second 

derivatives and huge

� H is unreasonable to form, store, or invert

xJ
αβW

z Proposed solution: Schwarz inside Schur!
� form approximate inverse action of state Jacobian and its 

transpose in parallel by Schwarz/multilevel methods 
� form forward action of Hessians by automatic differentiation; 

exact action needed only on vectors (JFNK)
� do not eliminate exactly; use Schur preconditioning on full 

system
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State of the art
z Domain decomposition is the dominant paradigm in contemporary 

terascale PDE simulation 
z Several freely available software toolkits exist, and successfully scale 

to thousands of tightly coupled processors for problems on quasi-
static meshes

z Concerted efforts underway to make elements of these toolkits 
interoperate, and to allow expression of the best methods, which tend 
to be modular, hierarchical, recursive, and above all — adaptive!

z Many challenges loom at the “next scale” of computation
z Implementation of domain decomposition methods on parallel 

computers has inspired many useful variants of domain 
decomposition methods 

z The past few years have produced an incredible variety of interesting 
results (in both the continuous and the discrete senses) in domain 
decomposition methods, with no slackening in sight
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More on domain decomposition
z 19th Conference

� 9-14 August 2009, Hunan (Xiangtan University)

z Web home
� ddm.org
� Freely downloadable papers, bibtex resources, scientific 

contacts
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Closing inspiration

“… at this very moment the search is on – every numerical analyst 
has a favorite preconditioner, and you have a perfect chance to 
find a better one.”

- Gil Strang (1986)


