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2 important multiscale effects

∂u

∂t
+ u∂xu + w∂zu = · · ·

u = ū + u′

1. Eddy momentum flux

“Convective momentum transport” (CMT)

∂ū

∂t
= −∂zw′u′ + · · ·

2. Background wind shear

∂u′

∂t
+ ū∂xu′ + w′∂zū = · · ·



Convectively coupled waves (CCWs)

.

observations from Nakazawa (1988) simulations from Tulich et al. (2007) .
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Convective momentum transport (CMT)

∂ū

∂t
= −∂zw′u′ + · · ·

Mesoscales and smaller:

Earlier this week:

• Multi-scale models for squall lines

• Superparameterization

Synoptic scales:

CMT from convectively coupled waves (CCWs)

• Can change velocity on the planetary scales (and MJO)

• Majda and Biello (2004), Biello and Majda (2005)



Convective momentum transport (CMT)

The importance of wave tilts:

• Need wave tilts to get nonzero CMT!

• Moncrieff (1992), Majda and Biello (2004), Biello and Majda (2005)

CMT illustration with diagnostic WTG model (Majda, 2007):

w′ = S′

θ

u′

x + w′

z = 0

To solve:

• Specify the heat source S′

θ
(this gives us w′)

• Compute u′ using the continuity equation

• Use w′ and u′ to compute the CMT: −∂zw′u′



Convective momentum transport (CMT)

Assume heat source with 2 phase-lagged baroclinic modes:

S′

θ = k cos[kx − ωt]
√

2 sin(z) + αk cos[k(x + x0) − ωt]
√

2 sin(2z)

CMT affects first and third baroclinic modes:

∂z〈w′u′〉 =
3αk

2
sin(kx0)[cos(z) − cos(3z)]

Need stratiform heating (α 6= 0)

Need lag between vertical modes (x0 6= 0)

i.e., Need wave tilts!
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Effect of background wind shear on convection/waves

Effect of background wind shear on squall lines

Condensate

Low-level shear determines propagation direction

from Lucas et al. (2000)



Effect of background wind shear on convection/waves

Effect of background wind shear on CCWs

Not many observations of this, but what is seen is ...

CCWs propagate in opposite direction of convective systems within them

.

from Nakazawa (1988) from Tulich et al. (2007) .

This will be a consistency check



Outline

• Background

– Convective momentum transport (CMT)

– Effect of background wind shear on convection/waves

• A multicloud model for convectively coupled waves (CCWs)

– Observations of CCWs

– A multicloud model for CCWs

• A simple dynamical model for convective wave–mean flow interaction

– Derivation

– Derivation using multiscale asymptotics

– Results



Observations of Convectively Coupled Waves (CCWs)

. .

. Takayabu et al. (1996) Straub and Kiladis (2003) .

Progression from congestus to deep convective to stratiform clouds



Observations of Convectively Coupled Waves (CCWs)

.  .

. Kiladis et al. (2008) .

Vertical tilts seen in velocity, moisture, temperature, etc.

so CCWs will have upscale CMT



The Multicloud Model (Khouider and Majda 2006)

(a model for CCWs)
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Equations of the multicloud model

Two linear shallow water systems, coupled through nonlinear source terms:

z=0

θ1u1

z=16 km

z=16 km

u2 θ2

z=0











∂u1

∂t
− ∂θ1

∂x
= − 1

τu

u1

∂θ1

∂t
− ∂u1

∂x
= Hd − R1











∂u2

∂t
− ∂θ2

∂x
= − 1

τu

u2

∂θ2

∂t
− 1

4

∂u2

∂x
= Hc − Hs − R2

Hd = Deep convective heating Hc = Congestus heating

R = Radiative cooling Hs = Stratiform heating

+ 4 more prognostic equations for θeb, q, Hs, Hc

+ diagnostic equations for some source terms



Equations of the multicloud model

Mathematical form: system of conservations laws with source terms

∂u

∂t
+

∂

∂x
f(u) = S(u)

u = (u1, θ1, u2, θ2, θeb, q, Hs, Hc)

Source terms are parameterizations of physical processes such as convective

heating, radiative cooling, evaporation, downdrafts

Simple exact solution: radiative–convective equilibrium

S(u) = 0, i.e., Hd = R1, etc.



CCWs in the Multicloud Model

Linear theory

.
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CCWs in the Multicloud Model

Nonlinear simulation
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CCWs in the Multicloud Model

Nonlinear simulation

.
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Modifications to the multicloud model

1. Add nonlinear advection and a 3rd baroclinic mode to capture key

multiscale effects

0

4

8

12

16

z 
(k

m
)

u
1

u
2 u

3

0

4

8

12

16

z 
(k

m
)

θ
1 θ

2

θ
3

[Stechmann, Majda, Khouider (2008) in press in journal Theor. Comp. Fluid Dyn.]

2. Use enhanced congestus closure of Khouider and Majda (2008)

3. Make congestus like a lower tropospheric version of deep convection

Hc = αc

Λ − Λ∗

1 − Λ∗
Qc, where Qc =

1

τconv

(θeb − a′

0(θ1 + γ′

2θ2))
+

Choose big value of γ′

2 for a lower tropospheric CAPE closure
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Dynamic model for convective wave–mean interaction

∂Ū

∂T
+

∂

∂z
〈w′u′〉 = 0

∂u′

∂t
+ Ū

∂u′

∂x
+ w′

∂Ū

∂z
+

∂p′

∂x
= S′

u,1

(with similar equations for other variables)

Key features of the model:

• Eddy flux convergence of wave momentum, ∂z〈w′u′〉, feeds the mean flow Ū

• Advection of the waves u′ by the mean flow Ū

• Mean flow time scale T = ǫ2t is longer than that for the waves

Multiscale asymptotic derivation of model

Need convectively coupled waves with tilts to have nonzero ∂z〈w′u′〉



Derivation of convective wave–mean equations

Start with multicloud model with nonlinear advection:

∂u2

∂t
− ∂θ2

∂x
= − 1

τu

u2 − 2
√

2 Ū3

∂u1

∂x

= Su + Au

∂θ2

∂t
− 1

4

∂u2

∂x
= Hc − Hs − R2 −

1

2
√

2

[

(u1 − Ū3)
∂θ1

∂x
− (θ1 − 9Θ̄3)

∂u1

∂x
+ 8Θ̄4

∂u2

∂x

]

= Sθ + Aθ

Apply space-time average to obtain mean equations:

∂Ū2

∂T
= 〈Au〉

∂Θ̄2

∂T
= 〈Sθ〉 + 〈Aθ〉, where T = ǫ2t is a longer time scale

Caveat: Mean momentum source terms 〈Su〉 are dropped

because convective momentum transport (CMT) is explicitly resolved

by the eddy flux divergence, 〈Au〉



Asymptotic derivation of wave–mean equations

Overview

Multiscale ansatz:

u = Ū(z, ǫ2t) + ǫ u′(x, z, t, ǫ2t) + O(ǫ2),

Insert ansatz into equations of motion:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

∂p

∂x
= Su.

Collect terms at each order, average, and apply secular growth condition to get:

∂Ū

∂T
+

∂

∂z
〈w′u′〉 = 0

∂u′

∂t
+ Ū

∂u′

∂x
+ w′

∂Ū

∂z
+

∂p′

∂x
= S′

u,1

(with similar equations for other variables)



Asymptotic derivation of wave–mean equations

Details for u equation

x: synoptic length scale (1500 km)

t: synoptic time scale (8 hours)

T = ǫ2t: intraseasonal time scale (30 days)

Space and time averaging:

f̄(z, t, T ) = lim
L→∞

1

2L

∫ L

−L

f(x, z, t, T ) dx

f ′(x, z, t, T ) = f(x, z, t, T ) − f̄(z, t, T )

〈f〉(x, z, T ) = lim
T̃→∞

1

2T̃

∫ T̃

−T̃

f(x, z, t, T ) dt

Full temporal derivative of f(t, ǫ2t) is ∂tf + ǫ2∂T f



Asymptotic derivation of wave–mean equations

Details for u equation

Multiscale ansatz:

u = Ū(z, ǫ2t) + ǫ u′(x, z, t, ǫ2t) + ǫ2u2 + O(ǫ3),

Insert ansatz into equations of motion:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

∂p

∂x
= Su.

Leading order terms at O(ǫ):

∂tu
′ + ∂x(2Ūu′) + ∂z(w

′Ū) + ∂xp′ = S′

u,1

This is the equation for the fluctuations u′



Asymptotic derivation of wave–mean equations
Details for u equation

Next order terms at O(ǫ2):

∂tu2 + ∂T Ū + ∂x(u′2 + 2Ūu2) + ∂z(w′u′) + ∂xp2 = Su,2. (1)

Apply zonal average to get equation for means:

∂tū2 + ∂T Ū + ∂z(w′u′) = 0

Suppressing secular growth of the higher order terms (see Majda refs):

• Ansatz assumed ǫ2u2 has a magnitude of O(ǫ2)

• This must be maintained or else the asymptotic ordering of the ansatz

would be destroyed

• For a time-dependent equation of the form ∂ū2/∂t = F (t),

secular growth in time is avoided if and only if 〈F 〉 = 0

Thus secular growth of ū2 is avoided if

∂T Ū = −∂z〈w′u′〉



Dynamic model for convective wave–mean interaction

∂Ū

∂T
+

∂

∂z
〈w′u′〉 = 0

∂u′

∂t
+ Ū

∂u′

∂x
+ w′

∂Ū

∂z
+

∂p′

∂x
= S′

u,1

(with similar equations for other variables)

Key features of the model:

• Eddy flux convergence of wave momentum, ∂z〈w′u′〉, feeds the mean flow Ū

• Advection of the waves u′ by the mean flow Ū

• Mean flow time scale T = ǫ2t is longer than that for the waves

Multiscale asymptotic derivation of model

• Intraseasonal time scale of Ū appears self-consistently



Multi-scale Model

∂T Ū = −∂z〈w′u′〉
∂T Θ̄ = −∂z〈w′θ′〉 + 〈Sθ,2〉
∂zP̄ = Θ̄

∂tu
′ + Ū∂xu′ + w′∂zŪ + ∂xp′ = S′

u,1

∂tθ
′ + Ū∂xu′ + w′∂zŪ + w′ = S′

θ,1

∂zp
′ = θ′

∂xu′ + ∂zw
′ = 0

Source terms are interactive using the multicloud model



Numerical methods

Equations take the form:

∂u′

∂t
= f(u′, Ū)

∂Ū

∂T
= g(u′, Ū)

Two different time steps: ∆t ≪ ∆T , with ∆T = 10∆t used here

Numerical method:

1. Ū(t0) frozen, u′(t0) → u′(t0 + ∆t) → u′(t0 + 2∆t) · · · → u′(t0 + ∆T )

2. Compute g(u′, Ū), which involves time and space averages such as 〈w′u′〉,
over the long time interval ∆T = 10∆t,

3. u′(t0 + ∆T ) frozen, Ū(t0) → Ū(t0 + ∆T ) using g(u′, Ū) from Step 2.

See Grabowski (2004) and Majda (2007) for other examples and references for this technique



Regular intraseasonal oscillations
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Linear Stability Theory
t = 550 days
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Snapshots of nonlinear waves in different mean shears
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Linear Theory
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The MJO and Westerly Wind Bursts

Surface westerlies begin at 12/15

Strong westerly wind burst develops aloft at 01/01

Majda & Biello (2004), Biello & Majda (2005): multi-scale diagnostic model shows that

WWB develops from upscale CMT from eastward-moving CCWs

Obs. of WWB/CMT/CCWs also support this (Tung & Yanai, 2002; Masunaga et al., 2006)



Westerly Wind Burst Intensification
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Irregular intraseasonal oscillation with multiscale waves
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Linear Stability Theory
t = 1005 days
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Irregular intraseasonal oscillations with Hopf bifurcation
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Cloud-Resolving Model (CRM) simulations of CCWs:

What is the role of CMT from mesoscale convection?

Results vary depending on strength of momentum damping:

∂u

∂t
= −1

τ
u + · · ·

• Held et al. (1993): No momentum damping: Long-time oscillation develops

– Is this due to CMT interactions or stratospheric interactions?

• Grabowski & Moncrieff (2001): Weak momentum damping:

CCWs develop with significant CMT

• Tulich et al. (2007): Stronger momentum damping:

CCWs develop with little or no CMT

• Held et al. (1993): Intense momentum damping:

Convection shut down except at a few grid points



Summary

• Dynamic model for convective wave–mean flow interactions

– Two-way interactions

– Asymptotic derivation and intraseasonal time scale

• Regular intraseasonal oscillations

– CMT is first downscale, then upscale

– Linear stability theory

• Irregular intraseasonal oscillations

– Use different climate base states

– One case:

∗ westerly wind burst intensification as in MJO

∗ either coherent or multiscale waves depending on mean wind

– Another case: Hopf bifurcation


