Vertically Sheared Horizontal Flow with Mass Sources: A Canonical Balanced Model Andrew J. Majda, Majid Mohammadian and Yulong Xing # Courant Institute of Mathematical Sciences New York University - 1: Vertically Sheared Horizontal Flow with Mass Sources: A Canonical Balanced Model, to appear in Geophysical and Astrophysical Fluid Dynamics (GAFD). - 2: Multiscale equations for the hurricane embryo in a WTG environment, in preparation. #### Introduction Two common assumptions in the development of multi-scale models: horizontal weak temperature gradient (WTG) approximation for potential temperature $$\Theta = \overline{\Theta}(z) + \epsilon \theta(\mathbf{x}_h, z, t), \qquad \epsilon \ll 1,$$ • low Froude number approximation for the horizontal flow U_h $$\mathbf{U}_h = \epsilon \mathbf{u}_h , \quad \epsilon \ll 1.$$ $\epsilon\cong\frac{1}{10}$ to $\frac{1}{7}$ are typical observed values for the lower/middle troposphere #### Introduction With the above background, the goal here is to study the following canonical balanced model. ### Vertically sheared horizontal flow with mass (heat) sources (VSHFS): $$\frac{D\mathbf{u}_h}{Dt} + f u_h^{\perp} = -\nabla_h p + \mathbf{S}_{\mathbf{u}}, div \mathbf{u}_h + w_z = 0, w N^2(z) = S_{\theta},$$ (1.3) #### Introduction The equations in (1.3) arise in a variety of multiple spatial scale balanced dynamics for the tropics: - on horizontal scales of order 1500 km and time scales of order 8 hours (see the BMESD model in Majda 2007b); - on horizontal scales of order 10 km and time scales of order 15 minutes (Klein 2000; Klein and Majda 2006); - with the beta plane approximation, f = βy, on horizontal scales of order 800 km and time scales on the order of 1 day (Sobel et al. 2001; Majda and Klein 2003); - on seasonal planetary scales (see SPEWTG model in Majda and Klein 2006). The forced Boussinesq equations takes the non-dimensional form: $$\frac{D\mathbf{u}_{h}}{Dt} + (\mathbf{R}\mathbf{o})^{-1}\mathbf{u}_{h}^{\perp} = -\nabla_{h}p + \mathbf{S}_{\mathbf{u}},$$ $$\frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \epsilon^{-1}\theta + S_{w},$$ $$\frac{D\theta}{Dt} = \epsilon^{-1}(-w + S_{\theta}),$$ $$div_{h}\mathbf{u}_{h} + w_{z} = 0.$$ (2.2) under the conditions: - 1: WTG approximation, - 2: low Froude number, - 3: comparable horizontal and vertical velocity magnitudes, - 4: large Rossby number $Ro = \frac{LV}{f} \ge O(1)$, Units: $$[x] = [z] = 10 \text{ km}, [t] = 15 \text{ minutes}, [\Box] = 3 \text{ K}, [u] = [w] = 10 \text{ m/s}, \text{ strong heating: } 120 \text{ K/hr}.$$ # Key Unsolved Questions for Hurricane Embryo: What preconditioning background environments (Shear, Vonticity, Temp, Moisture) Lead to Tropical Cyclogenesis? HE - Stage O(10 m/s) winds Hot Towers O(10 Am) 120 Kg. Hot Towers O(10 km), 120 Khr (a) Mesovorties of T.C. O(100 km) What is involved in creating (2)? What is involved in creating (*)? Hot Towers, Montgomery gp, 2004Moist Thermodynamics, Bister-Emanuel The derivation of the canonical model (1.3) is straightforward. They are - the leading order ϵ^0 equations for horizontal momentum and mass conservation - the leading order ϵ^{-1} equations for the potential temperature. If the temperature perturbation θ is expanded as $\theta = \epsilon \theta_1$, then θ_1 is determined from the solution of (1.3) as given by $$\theta_1 = \frac{Dw}{Dt} + \frac{\partial p}{\partial z} - S_w.$$ The canonical models in (1.3) has direct relevance for the troposphere with horizontal scales of order 10 km and time scales of order 15 minutes; It also apply on horizontal scales of order 100 km and time scales of order 2.5 hours; These time scales are relevant for the formation of mesovortices in the hurricane embryo. To establish this fact, introduce the aspect ratio A = H/L, $A \le 1$ and the new rescaled variables $$T = At, X = Ax_h,$$ $w = Aw_A,$ $(Ro)_A = ARo,$ $AS_{\theta,A} = S_{\theta},$ $AS_{u,A} = S_{u}.$ Note: Horizontal Velocity, $u = u_A(X,T)$ still has units $u = u_A(X,T)$ still has units With these rescaling, the equations in (2.2) become $$\frac{D\mathbf{u}_{h}}{DT} + (\mathrm{Ro})_{A}^{-1}\mathbf{u}_{h}^{\perp} = -\nabla_{h}p + S_{\mathbf{u},A},$$ $$A^{2}\frac{Dw_{A}}{Dt} = -\frac{\partial p}{\partial z} + \epsilon^{-1}\theta + S_{w},$$ $$\frac{D\theta}{DT} = \epsilon^{-1}(-w_{A} + S_{\theta,A}),$$ $$div_{X}\mathbf{u}_{h} + (w_{A})_{z} = 0.$$ (2.6) The same derivation can be repeated now for any A with A \ll 1 to yield (1.3) as a canonical balanced model provided that $(Ro)^{-1}_A$ remains finite. # **Vertical Vorticity Dynamics** ## Vertically sheared horizontal flow with mass (heat) sources (VSHFS): $$\frac{D\mathbf{u}_h}{Dt} + f\mathbf{u}_h^{\perp} = -\nabla_h p + \mathbf{S}_{\mathbf{u}}, div\mathbf{u}_h + w_z = 0, wN^2(z) = S_{\theta},$$ (1.3) ## **Vertical Vorticity Dynamics** Use the horizontal Helmholtz decomposition $$\mathbf{u}_{h} = \nabla_{h} \Phi + \nabla_{h}^{\perp} \Psi + \mathbf{b}(z, t),$$ where Ψ is the stream function, Φ is the velocity potential, and $\mathbf{b}(z,t)$ is the specified background shear. ## **Vertical Vorticity Dynamics** By taking curl_h of (1.3), we have the Vertical Vorticity Dynamic Equation: $$\frac{D\omega}{Dt} = (\omega + f)(S_{\theta})_z + (\frac{\partial}{\partial z}\mathbf{u}_h^{\perp}) \cdot \nabla_h S_{\theta} + curl_h \mathbf{S_u}.$$ Stactching tilt It can be decomposed, using Helmholtz decomposition, as: $$\frac{D\omega}{Dt} = (\omega + f)w_z - \nabla_h^{\perp} w \cdot \frac{\partial \mathbf{b}}{\partial z} - \nabla_h^{\perp} w \cdot \frac{\partial \nabla_h \Phi}{\partial z} - \nabla_h^{\perp} w \cdot \frac{\partial \nabla_h^{\perp} \Psi}{\partial z} + curl_h \mathbf{S_u}.$$ We investigate this equation in this presentation.