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Gravity Current Simulation

• Mixing and entrainment in gravity currents transform
source waters into deep and intermediate waters

• Carried by large scale ocean currents O(10-100 km).
• Dynamical scales of mixing instabilities are small

compared to oceanic scales: SGS needed to model
mixing.

• Parameterization need to be validated against observation
and DNS-type simulation.

• increase modeled Re or increase size of computational
domain to follow evolution of gravity current.

• Process-oriented studies in idealized channels
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Gravity Current Simulation
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• Currently a 2D model built on Boussinesq NS equations in
a ζ − ψ formulation.

• A salt-like tracer evolves according to an advection
diffusion equation, and provides buoyancy forcing.
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Model Highlights

• ζ − ψ equations discretized using spectral elements.
• Dual paths h-p convergence rates for smooth solutions
• Excellent scalability on parallel computers
• Phase fidelity and no numerical dissipation.

• Poisson equation solved using substructing and PCG on
the Schur complement.

• Tracer equation discretized with spectral element DGM.
• Discontinuous interpolation & local mass matrices.
• Well-suited to advection-dominated flows.
• Upwind flux bias controls Gibbs oscillations
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Gravity Current Simulation at Re = 50,000
Impact of varying inlet current height

steady

varying

Grid: 300x50 elements of degree 8 with refinement near bottom
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Transport in Density Classes Re = 50,000
Impact of varying inlet current height

steady varying
• Densest water mixed in both cases
• In steady case most transport is in 0.4-0.6 class
• In time-varying case transport is in 0.2-0.4 class
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Questions

• Can DG deliver reliable estimate of mixing?
Convergence analysis

• Can we increase domain size while keeping cost low
and/or high scalability?
Improve iterative solver
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Estimating Implicit Mixing in DG solution

• How much of the mixing is spurious (numerical)
• Sequence of CG/DG solutions to verify convergence

• Re = 2,000, Pr = 7.
• Re = 10,000, Pr = 7.

• Metrics for judging solution
• monotonicity of ρ:

min[ρ(~x , t = 0)] ≤ ρ(~x , t) ≤ max[ρ(~x , t = 0)]

• density classes
• Energy budget
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Energy Equation for Closed insulated Domain

d
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F 2
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• z∗: vertical position after adiabatic ρ-redistribution
• Eb: Background potential energy

responds only to diabatic processes
• Ea: Available potential energy

responds to reversible adiabatic processes only.
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Re Kx × Ky × N DG-Time CG-time
2,000 020× 04× 06 30.00 30.00
2,000 025× 05× 06 16.00
2,000 030× 06× 06 16.00
2,000 040× 08× 06 80.00 7.32
2,000 040× 08× 07 80.00
2,000 040× 08× 08 80.00
2,000 040× 08× 09 80.00
2,000 040× 08× 09 80.00
2,000 080× 16× 06 82.00 95.00
2,000 080× 16× 07 80.00
2,000 080× 16× 08 80.00
2,000 080× 16× 09 80.00
2,000 160× 32× 06 80.00 80.00
2,000 160× 32× 06 104.00
2,000 160× 32× 07 80.00
2,000 160× 32× 08 80.00
2,000 160× 32× 09 80.50
2,000 320× 64× 06 97.00
2,000 320× 64× 07 80.40 31.10
2,000 320× 64× 08 80.00 26.00
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Re DG/CG Kx × Ky × N Time
10,000 DG 040× 08× 06 Crashed
10,000 DG 080× 16× 06 4.00
10,000 DG 160× 32× 06 80.00
10,000 DGc 040× 08× 06 Crashed
10,000 DGr 040× 08× 09 10.14
10,000 DGr 082× 18× 06 80.00
10,000 DGr 082× 18× 07 80.00
10,000 DGr 082× 18× 08 21.36
10,000 DGr 082× 18× 09 33.86
10,000 DGr 162× 34× 06 80.00
10,000 DGr 400× 81× 09 80.00
10,000 CG 320× 64× 06 97.00
10,000 CGr 400× 81× 08 80.00

Table: table of experiments for Re = 10,000
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Figure: h-refinement DG density fields for Re=2,000
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Figure: h-refinement DG density fields for Re=10,000
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Out of range metric, Re = 2,000
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Figure: Out of range density fraction PDF for various CG and DG
partitions at N = 5. The CG has a larger out of range fraction then
DG for all cases except for the initial phase of the high resolution
simulation with 320× 64 partition.
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Out of range metric, Re = 10,000
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Density Classes comparison at t=80,Re = 2,000
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Figure: density PDF for the various runs for N = 5.
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Errors in water mass pdf at t=20, Re = 10,000
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Figure: Errors in pdf relative to CG reference
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Energy history of reference simulation Re = 2,000
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Figure: Energy history for reference CG discretization at N = 5.
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Figure: Energy error histories for various DG discretization at N = 5.
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Figure: Energy error histories for various CG discretization at N = 5.
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Energy errors for Re = 10,000
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Figure: Energy errors normalized by TE of reference solution for a
density DGM solution using 162× 34 elements.
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Conclusion for mixing

• Developed a model for gravity current mixing
• DGM discretization helps stabilize the model without

excessive dissipation
• water mass properties impacted more then energy
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Iterative Solvers

1. currently substructuring (Schur complement)
2. Call standard libraries PETc
3. Tailored solver for current geometry
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Domain Decomposition into K rectangles

Ωk = [xk−1 xk ]× [−1 0], k = 1,2, . . . ,K
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Local Poisson problems

∇2ψk = −ωk in Ωk (4)
ψk (x ,0) = ψk (x ,−1) = 0 (5)
ψ1(x0, z) = ψK (xK , z) = 0 (6)

ψk (xk ,0) = ψk+1(xk , z), k = 1,2, . . . ,K − 1 (7)
ψk

x (xk ,0) = ψk+1
x (xk , z), k = 1,2, . . . ,K − 1 (8)

Equations 7 and 8 express the transmission conditions, namely
the continuity of the function and its first derivative, across the
K − 1 internal boundaries located at xk .
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Domain Decomposition:Split Solution ψk = ψ̂k + ψ
k

1. Poisson problem

∇2ψ̂k = −ωk in Ωk (9)
ψ̂k (x ,0) = ψ̂k (x ,−1) = 0 (10)

ψ̂k (xk−1, z) = ψ̂k (xk , z) = 0 (11)

2. Laplace problem

∇2ψ
k

= 0 in Ωk (12)

ψ
k

(x ,0) = ψ̂k (x ,−1) = 0 (13)

ψ
k

(xk−1, z) = αk−1(z) (14)

ψ
k

(xk , z) = αk (z) (15)
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Analytical solution to Laplace problem

ψ
k

(x , z) =
∞∑

n=1

αk−1
n sinhλn(xk − x) + αk

n sinhλn(x − xk−1)

sinhλnlk
sinλnz

αk
n =

∫ 0

−1
αk (z) sinλnz dz∫ 0

−1
sin2 λnz dz

λn = nπ, n = 1,2, . . .
lk = xk − xk−1.
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Constraints on αk

∂ψ
k+1

∂x

∣∣∣∣∣
xk

− ∂ψ
k

∂x

∣∣∣∣∣
xk

= −

 ∂ψ̂k+1

∂x

∣∣∣∣∣
xk

− ∂ψ̂k

∂x

∣∣∣∣∣
xk

 (16)

αk−1
n

sinhλnlk
−
[

coshλnlk
sinhλnlk

+
coshλnlk+1

sinhλnlk+1

]
αk

n +
αk+1

n

sinhλnlk+1
= −β

k
n
λn

βk
n =

∫ 0
−1

[
ψ̂k+1

x (xk , z)− ψ̂k
x (xk , z)

]
sinλnz dz∫ 0

−1 sin2 λnz dz
.

External interfaces require that α0
n = αK

n = 0.
Symmetric tridiagonal system for each vertical mode n;
Redundant parallel solution.
Cut-off n? depends on βk

n .
For large λnlk >> 1 the off-diagonal terms asymptote to zero
Diagonal term asymptotes to 2
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Domain Decomposition Algorithm

1. Solve inhomogeneous Poisson problem for ψ̂k .

2. Compute normal flux jump at internal interfaces
[
ψ̂k

x

]
3. Compute Fourier-sine coefficients: βk

n = S
[
ψ̂k

x

]
4. Broadcast βk

n to all processors
5. Solve tridiagonal systems on all processors αk

n = T−1βk
n .

6. Compute interfacial solution αk = STαk
n

7. Solve local Laplace problems
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Domain Decomposition Algorithm

1. Schur complement problem: αk = ST T−1S
[
ψ̂k

x

]
2. When geometry is not rectangular the above provide for

symmetric preconditioner for the Schur complement
problem.
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Weak scalability analysis

Kx Ky NPROC time
64 8 4 0.0758
96 8 6 0.1197

160 8 10 0.1572
176 8 11 0.1707
192 8 12 0.2339
240 8 15 0.2116
288 8 18 0.1583

Table: Scalability for 128 elements/processor
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Analytical solution of tridiagonal system for lk = l

Define Fourier-sine transform along the partition index:(
αk

n
βk

n

)
=

2
K

K−1∑
m=1

(
α̂m

n
β̂m

n

)
sin

πkm
K

(17)

Orthogonality of the functions sin πkm
K :

α̂m
n =

β̂m
n

2λn

[
cothλnl − sinh−1 λnl cos mπ

K

] . (18)
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Analytical solution of tridiagonal system for lk = l

αk
n =

2
K

K−1∑
m=1

β̂m
n

2λn

[
cothλnl − sinh−1 λnl cos mπ

K

] sin
πkm

K

=
K−1∑
j=1

1
λnK

K−1∑
m=1

sin πkm
K sin πjm

K[
cothλnl − sinh−1 λnl cos mπ

K

]
︸ ︷︷ ︸

Bn
jk

β j
n

where the matrix Bn
jk is the inverse of the tridiagonal matrix.
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Analytical solution of tridiagonal system for lk = l
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Computation of Fourier-sine coefficients

βk
n = 2

∫ 0

−1

[
ψ̂k

x (xk , z)
]

sinλnz dz

=
E∑

e=1

∆ze

∫ 1

−1

[
ψ̂k

x (xk , σ)
]

sinλn

(
∆ze

σ + 1
2

+ ze−1

)
dσβk

n

=
E∑

e=1

N∑
i=1

(
Ce,k

i,n cosλnze + Se,k
i,n sinλnze

) [
ψ̂k

x (xk , ze
i )
]

Ce,k
i,n = ∆ze

∫ 1

−1
hi(σ) sin

λn∆zeσ

2
dσ

Se,k
i,n = ∆ze

∫ 1

−1
hi(σ) cos

λn∆zeσ

2
dσ
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Computation of Fourier-sine coefficients

hi(σ) =
N−1∑
m=0

hi,mPm(σ) (19)

Ce,k
i,n = ∆ze

N−1∑
m=0

him

∫ 1

−1
Pm(σ) sin

λn∆zeσ

2
dσ (20)

Se,k
i,n = ∆ze

N−1∑
m=0

him

∫ 1

−1
Pm(σ) cos

λn∆zeσ

2
dσ (21)

Pm: Legendre polynomial of degree m.
him: m-th Legendre spectral coefficient of hi(σ)
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Computation of Fourier-sine coefficients

Ce,k
i,n = 2∆ze

N−1∑
m=1,3,5

(−1)
m−1

2 him jm

(
λn∆ze

2

)
(22)

Se,k
i,n = 2∆ze

N−1∑
m=0,2,4

(−1)
m
2 him jm

(
λn∆ze

2

)
(23)
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Inverse Projection:Fourier-sine to Spectral element space

u(z) =
∑

n

ûn sinλnz =
N∑

i=1

uihi(z) ze−1 ≤ z ≤ ze

The matrix equations for the Fourier coefficients become

Mu = b (24)

bj =
∑

n

ûn

∫ zE

z0

hj(z) sinλnz dz (25)

=
∑

n

ûn
∑

e

1
2

[
Ce

j,n cosλnze + Se
j,n sinλnze

]
(26)

M is 1D mass
Ce

j,n and Se
j,n are as before
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Solver Development Conclusion

• Validated transformation between SE and sine-spaces
• Developed and tested solver
• initial scalability tests promising
• room for improvement
• Compare specialized solver performance to other methods
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