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Purpose of this Project

Focus of this thesis

Model the shallow water equations (SWE) on a sphere.

Why?

1 Physics

Model global horizontal dynamics of the atmosphere
Provide testbed for fully 3D models (time stepping, etc)

2 Computational Expense

Cheaper to test atmospheric core on 2D model such as SWE

Measures of success

1 1992: Williamson et al. compiled a collection of 7 tests from
literature (look at SWTC2 and SWTC5)

2 2004: Galewsky et al. introduced additional test
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Three Big Choices

1 What formulation of the SWE should be used?

2 What numerical method should be used?

3 How should the sphere be discretized?

(1) What formulation of SWE to use

Vorticity - Divergence form

Pros Small adjustment to Potential Vorticity (PV) - Divergence
form, can ensure conservation of PV

Cons Requires solving three auxiliary equations, can add
computational expense

Other options:

flux form
advective form
stream function - velocity potential form
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Three Big Choices

1 What formulation of the SWE should be used?

2 What numerical method should be used?

3 How should the sphere be discretized?

(2) What method to use

Element-based Galerkin (EBG) Method

Pros Mostly local, so great for parallelization; many EBG methods
are inherently conservative; high-order accurate

Cons Expensive to implement serially

Other options:

spectral methods
finite difference methods
finite volume methodsCOURTESY M
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Three Big Choices

1 What formulation of the SWE should be used?

2 What numerical method should be used?

3 How should the sphere be discretized?

(3) How to discretize the sphere

Cubed Sphere

Pros No issues at poles; roughly uniform-sized rectangular elements
Cons Numerical noise along cube edges

Other options

regular latitude-longitude grid
geodesic grid
icosahedral gridCOURTESY M

. L
EVY



Motivation Background Numerical Experiments and Results Future Work Time Permitting

Why is conservation so important?

Conservation in general

On small time scales (e.g. weather forecasting model), a
slight loss in mass or PV is not awful

Full climate models simulate decades or centuries

small changes add up
forecast that says “atmosphere won’t have mass in 300 years”
is not useful

PV as a prognostic variable

In 1939, Rossby pointed out that absolute vorticity is
conserved in 2D flows; the next year, he realized that PV is as
well

In 2D models, PV can be inverted to find wind field

3D models, PV contains information about wind, pressure, and
temperature fields

More info in Hoskins et al. (1985)
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Why DG and SEM?

Discontinuous Galerkin

Locally conservative, great for physically conserved quantities
(mass, PV, etc)

Mostly local method, good candidate for parallelization

High-order accurate

Spectral Element

Same computational domain as DG

Similar finite-dimensional function space as DG (see below)

Easier to implement than DG

Note

In this implementation, the only difference between DG and SEM is
in the treatment of the edges of each element - DG allows functions
to be discontinuous at element edges, SEM enforces continuity.
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Why the Cubed Sphere?
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Issues with typical lat-lon grid

Polar singularities

Mesh converges at the poles!
Leads to stability issues in polar region
Avoided with polar filtering, which is non-local (bad for parallel
computation)
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Solver Details

About the DG and SEM discretizations

GLL grid used for quadrature on each element

Basis functions: tensor products of Lagrange polynomials

SEM requires continuity over element boundaries, DG uses
flux formula

Time Stepping (for advection)

Explicit 3rd-order TVD Runge-Kutta scheme used for BVE

Reduced to 2nd-order RK for SWE

Solving linear system resulting from SEM

Conjugate Gradient used initially

Now that physical model works, need to replace with
something more efficient (multigrid)
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History of Numerical Weather Prediction

Weather Prediction by Numerical Process, 1922

“Perhaps some day in the dim future it will be possible to advance
the computations faster than the weather advances.... But that is a
dream.” – Lewis Fry Richardson
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First Step Towards Richardson’s Dream

∂η

∂t
+ ∇H ·

[

vη
]

= 0

1950: Charney, Fjörtoft, and von Neumann numerically solved
Barotropic Vorticity Equation (BVE)

First successful numerical weather prediction algorithm
Took 24 hours of “compute time” on ENIAC to simulate 24
hours of atmospheric behavior

More on BVE

Simple model for vortex dynamics

Can be thought of as simplification of SWE in
vorticity-divergence form

Tested method described in this talk on BVE, will show
results from one case
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History of the Methods

Discontinuous Galerkin

Hybrid method, combines pieces of finite volume and finite
element methods

Introduced in technical paper out of Los Alamos: Reed and
Hill, 1973 (neutron transport)

Analysis of method done by Lesaint and Raviart, 1974

Late ’80s to Mid ’90s: Series of papers by Cockburn and Shu
combined DG with TVD Runge-Kutta time stepping

Spectral Element

Introduced in Patera, 1984

Reviewed by Maday and Patera, 1989 (Incompressible
Navier-Stokes)

Similar to finite element methods available at the time, except
high-order accurate
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The Cubed Sphere Geometry

−1 0 1
−1

0

1

Cube is inscribed in a sphere

Mapping between cube and sphere via gnomonic projection
(ray from center of sphere to surface of sphere intersects cube)
No issue at poles, care needs to be taken at corners / edges

Introduced by Sadourny in 1972

Sat mostly dormant until 1996

Re-introduced independently by Rančić et al. and Ronchi et al.
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The Shallow Water Equations

λ

h

h*

z

h

θ

s

Variables

(λ, θ) are coordinates on the sphere (lon-lat)

h(λ, θ, t) is the height of the top of the fluid layer

hS(λ, θ) is the surface topography

h∗ = h − hS is the thickness of the fluid layer
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The Shallow Water Equations

The shallow water system is based on conservation of mass and
momentum – it combines the mass equation and the horizontal
momentum equation:

∂h∗

∂t
+ ∇H · (h∗v) = 0

∂v

∂t
= −∇H(gh + v · v/2) −

(

(∇H × v) + f
)

v⊥

Variables and Operators

∇H is the horizontal gradient operator

v(λ, θ, t) = (u, v)T is the horizontal wind

v⊥ = (−v , u)T is orthogonal to v

f is Coriolis parameter, g is gravitational constant
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Vorticity - Divergence Form of Momentum Equation

Momentum Equation

∂v

∂t
= −∇H(gh + v · v/2) −

(

(∇H × v) + f
)

v⊥

Taking the curl and divergence of the momentum equation
yields

∂η

∂t
+ ∇H · [vη] = 0

∂δ

∂t
+ ∇

2
H(gh + v · v/2) −∇H × [vη] = 0

Variables

η = ∇H × v + f is absolute vorticity

δ = ∇H · v is divergence
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Full Shallow Water System

Vorticity-Divergence formulation of SWE consists of

The mass equation,

the momentum equations in η - δ form, and

three auxilary equations to recover v.

∂h∗

∂t
+ ∇H ·

[

vh∗
]

= 0

∂η

∂t
+ ∇H ·

[

vη
]

= 0

∂δ

∂t
+ ∇

2
H

[

gh + v · v/2
]

−∇H ×
[

vη
]

= 0

−∇
2
Hψ = −ζ

−∇
2
Hχ = −δ

v = ∇
⊥

Hψ + ∇Hχ
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Steps Necessary to Solve Shallow Water Equations

Given initial v, η and δ can be calculated (analytically) by

η = ∇H × v + f δ = ∇H · v

1. Keep v constant, advance through one stage of the RK time
step in advection solver∗ to find new values of h∗, η, and δ:

∂h∗

∂t
+∇H · (h∗v) = 0

∂η

∂t
+∇H · (ηv) = 0

∂δ

∂t
+∇

2
H [gh + v · v/2] −∇H × (ηv) = 0

∗DG for h∗ and η, SEM for δ
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Steps Necessary to Solve Shallow Water Equations

2. Given the new η and δ values, the Poisson solver is used to
update the stream function and velocity potential

−∇
2
Hψ = −(η − f ) −∇

2
Hχ = −δ

3. With ψ and χ known at the new RK stage, v is updated from
the relation

v = ∇
⊥

Hψ + ∇Hχ

4. v is again held constant, and steps 1-3 are repeated until the
desired time has passed (filtering as needed).
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BVE Results

Initial Vorticity

120 W 60 W 0 60 E 120 E90 S

45 S

Eq

45 N

90 N
Numerical Vorticity at 120:00:00

120 W 60 W 0 60 E 120 E90 S

45 S

Eq

45 N

90 N

Test Case: Wave Propogation

Wave 6 propagating eastward 20◦ per day

Test taken from Gates and Riegel (1962)

Solution given in terms of stream function. At time t,

ψ(λ, θ, t) = A sin(mλ− νt)Lm
n (sin(θ)) − Ba2 sin θ + CLn(sin θ).

Note that η and v can be calculated directly from ψ

Vorticity animation
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BVE Results
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Shallow Water Results – SWTC2

Test Case: Stable Steady State

Test case #2 from Williamson et al. (1992)

Vorticity and height fields are balanced, shouldn’t change

hS = 0 (no specified topography)

α = π/4 is the angle between axis of rotation and polar axis

Compare final state to initial condition for error analysis

Initial (steady) state given by

h∗(λ, θ) = h0 −
1

g

(

aΩu0 +
u0

2

2

)

(cos λ cos θ sinα+ sin θ cosα)

η(λ, θ) =

(

2u0

a
+ 2Ω

)

(− cos λ cos θ sinα+ sin θ cosα)
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Shallow Water Results – SWTC2

SW TC2, Initial Height
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SW TC2, Height (Day 5)
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Contours Range from 960 to 3000 (units = m)

Results using 96 elements and an 8 x 8 GLL grid.COURTESY M
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Shallow Water Results – SWTC2

SW TC2, Error in Height Field (Day 5)
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Shallow Water Results – SWTC2

SW TC2, Initial Relative Vorticity
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SW TC2, Relative Vorticity (Day 5)
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Results using 96 elements and an 8 x 8 GLL grid.COURTESY M
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Shallow Water Results – SWTC2

SW TC2, Error in Vorticity Field (Day 5)
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Shallow Water Results – SWTC2
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Shallow Water Results – SWTC8

Test Case: Barotropic Instability

Test taken from Galewsky et al. (2004)

Highlights issue with Williamson test suite

Mountain in TC #5 is not differentiable (leads to spectral
ringing, small time step at beginning of test case, etc)

Zonal jet between θ0 and θ1 (in N. hemisphere)

Small perturbation to h∗ in middle of jet

Interesting on cubed sphere because of jet location

u(λ, θ) =

{

umax

en
exp

[

1
(θ−θ0)(θ−θ1)

]

θ0 < θ < θ1

0 otherwise

h∗(λ, θ) = h0 −
1

g

∫ θ

−π/2
[afu(φ) + tan(φ)u2(φ)]dφ+ h′(λ, θ)
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Shallow Water Results – SWTC8

SW TC8, Initial Relative Vorticity
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SW TC8, Relative Vorticity (Day 6, Ne = 864)
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SW TC8, Relative Vorticity (Day 6, Ne = 486)
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SW TC8, Relative Vorticity (Day 6, Ne = 1944)
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Results using varying number of elements and a 6 x 6 GLL grid

What’s happening?

Numerical error from grid dominates the low-resolution solution

Animation (1944 Elements, 6 × 6 GLL)
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Shallow Water Results – Comparing to a Different Model

SW TC8, Relative Vorticity (Day 6, Ne = 864)
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864 elements, 6 × 6 GLL grid
using the method discussed here

864 elements, 6 × 6 GLL grid
using the advective form of the
SWE (on cubed sphere)

About these plots

As previously mentioned, numerical error from the grid pollutes low
resolution tests. Here a grid resolution of ∼ 1.5◦ captures the insta-
bility in the η-δ formulation but not in the advective formulation.
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Conservation Results – η-δ Formulation

Change in mass, SWTC2 Change in mass, SWTC5

Mass is conserved to machine precision in the steady state test, but
not in either of the other tests – indicates need to move to fully DG
method.

COURTESY M
. L

EVY



Motivation Background Numerical Experiments and Results Future Work Time Permitting

Comparing PV and Energy Conservation

Vort-Div model Advective Model

Potential Vorticity for SWTC2
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Comparing PV and Energy Conservation

Vort-Div model Advective Model

Potential Vorticity for SWTC5
COURTESY M

. L
EVY



Motivation Background Numerical Experiments and Results Future Work Time Permitting

Comparing PV and Energy Conservation

Vort-Div model Advective Model

Potential Vorticity for SWTC8
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Comparing PV and Energy Conservation

Vort-Div model Advective Model

Energy for SWTC5
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Comparing PV and Energy Conservation

Vort-Div model Advective Model

Energy for SWTC8
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The Elephant in the Room

Model portrays physical conditions accurately, but...

The choice of the conjugate gradient method to solve the discrete
Poisson problem is highly in-efficient.

# of iterations
Ng Ne = 96 Ne = 384

3 81 166
4 135 272
5 192 385
6 254 505

The number of CG iterations needed to reduce the residual in the
global Poisson system by a factor of 10−14.

Note that the iteration count increases with both Ne and Ng ,
which is bad news for high resolution runs.
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The Elephant in the Room

Effect of this cost on the Shallow Water model

As the grid increases in size, a larger percentage of time is spent
solving the Poisson equations.

Ne Ng Advection Poisson Helmholtz Filtering

96 6 0.34 98.82 0.10 0.75
216 6 0.25 99.19 0.07 0.49
96 8 0.13 99.40 0.03 0.44
216 8 0.07 99.71 0.02 0.21

Percentage of time spent in each of four phases of the solver for
SWTC2.

For the more complex tests, even more time is spent in at the
Poisson step.
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Towards Efficient Parallelization - 2D DG Advection
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Future Work

Four big goals for this project

1 Improve computational efficiency

First step: replace the CG iterations
Parallelization: EBG methods are great on distributed memory
machines

2 Maintain conservation (get rid of SEM discretization)

3 Move from vorticity-divergence to PV-divergence
4 Expand to 3D model

Stratified atmosphere, each layer is shallow water model
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Shallow Water Results – SWTC5

Test Case: Zonal Flow over a Mountain

Test case #5 from Williamson et al. (1992)

Same initial conditions as TC 2 (α = 0)

Single mountain located in northern hemisphere

SW TC5 Surface Topography
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hS (λ, θ) = hS0
(1 − r/R),

where R = π/9 and r = min(R ,
√

(λ− λc)2 + (θ − θc)2)
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Shallow Water Results – SWTC5

SW TC5, Initial Height
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SW TC5, Height (Day 7)
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SW TC5, Height (Day 15)
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Shallow Water Results – SWTC5
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Results using 96 elements and an 8 x 8 GLL grid (Animation)
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