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SCALING, EFFICIENCY, & EFFECTIVENESS

* Modern architectures: 100,000+ procesi@ores

— Models must scale massively parallel machi

— Pass as few messages as possible OQ~
* Scaling + ... = Efficiency ‘
— Time step

— Single-node efficiency
e Efficiency + ... = An Effective Model
— Conservation

— Oscillations & Positivity
— Damping & Ef '%ve resolution

— Isotropy &6@ Imprinting
— Properly(bafancing source terms and fluxes

e Geostrophic, Hydrostatic, Thermal wind



THE EXTREMES OF EFFICIENCY

 Semi-implicit semi-Lagrangian %
— Large time step @?‘
— High single-node efficiency ()Q~
— Poor Scaling to 100,000+ processors <

* Explicit Eulerian Galerkin Metkdga
— Small time step
— Low single-node efficieney
— Good scaling to 100,600+ processors

e Explicit CB-FFSL @te—Volume Method

— |In between tirEstep
— In betweefy 3ingle-node efficiency
— Good scaling to 100,000+ processors



EXPLICIT INTEGRATORS, SCALABILITY, & TIME STEP

 Multi-Stage (e.g. Runge-Kutta) %
— Requires halo swap for each stage (more ﬁanication)
* Multi-Step (e.g. Adams-Bashforth) AO

— Only one halo swap per time step (l&ss’communication)
— CFL Limited to order unity

* Single-Stage Single-Step (i4€. Fully Discrete)
— Only one halo swap per.time step (less communication)
— CFL larger than unity
— Often used in a pheric transport

— Examples in@'&port
* Lin-Roo

. Conse(dtive Semi-Lagrangian (CCS, SLICE, GeCORE, CSLAM)
 ADER (Arbitrary accuracy DErivative Riemann) method



EXPLICIT SEMI-LAGRANGIAN:

FROM TRANSPORT TO NON-LINEAR EQUATIONS

e Method of Characteristics Q‘®

— Transforms non-linear equation set int@ Dansport equations

— Characteristic variables materially egnserved along
characteristic trajectories

— Equation set must be hyperb©0lic

e Semi-Lagrangian Transpekt of Characteristics
— FFSL method guarantees conservation & allows flexibility
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DRY ATMOSPHERIC EULER EQUATIONS

* Dry, compressible, inviscid, & non-hydros@@equations

P pu pWQ} R
ojpl o\piep| of 0| | 0
Al pWw| X| puw AW + P — 09
0| | pul v owd | | 0 |
* Conserves:
— Mass L. A. Bauer, 1908, Phys. Rev.
— Momentum C, log @ + const

— Potential Temégﬁre (& therefore entropy)
* Gravity sour
e Equation $etis hyperbolic; thus allows characteristics



EXPLICIT EULERIAN FINITE-VOLUME

R FRISHEQ) _|,
(54

e Change in mean Q depends P
on flux through boundaries é%‘

* Fully Discrete: Time 20 IF(Q) ndl'=0
: . : 1 V
discretized by a direct
integral
e We want to know the time- =
AQ
averaged flux thr%ugh each
cell boundaryQ_ “
AN I
v
C) Qn+1_Q _gzrlFatgl
Vo 5




CHARACTERISTICS-BASED FFSL METHOD

o
ary?

Decompose into chara%gstics

What is the flux at the cell bo

Wave Speed

O —
C) Upwind Cell



CHARACTERISTICS-BASED FFSL METHOD

@é

Reconstruct Characteristic Var@Upwmd Cell

5-celstencil
f <——l —

w;(x)



CHARACTERISTICS-BASED FFSL METHOD

integral over domain of dep ce

P

\

Time integral cast into upstrewﬁal
n

Xi.1/,-NAt

o W,

Integrate w(x) over Domain of Dependence



WEIGHTED ESSENTIALLY NON-OSCILLATORY (WENO)

RECONSTRUCTION (SHU 1999)

e Adaptive use of stencils @?‘
— Create interpolants over multiple stencils
— Compute the oscillations of each interpolan(t)
— Weight the most oscillatory interpolagtthe lowest
— Use the weighted sum of the interpolants
— Accuracy between 3™ and 5t grder in the case below
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CONVECTIVE BUBBLE TEST CASE

Initial Conditions

— Constant potential
temperature

— Hydrostatic balance
— No wind

— 2 °K potential temperatuge
perturbation

Simulated for 1,000

Ax = Az =150

CFL=0.9 (%90.38 5)
QO

Q

Wicker & Skar@%k (1998, MWR)
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CONVECTIVE BUBBLE TEST CASE

WENO (5th-order)

6000 8000 12000 14000 6000 8000 10000 12000 14000
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STRAKA DENSITY CURRENT TEST CASE

Initial Conditions (Straka et al, INMF, 19

— Constant potential temperature

— hydrostatic balance

— no wind

— -15 °K potential temperature perturbaﬁn
Simulated for 900 s

Ax=Az=50m

CFL=0.9 (At=0.135)
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STRAKA DENSITY CURRENT TEST CASE: RESULTS

89.0 291 292.5294 295.0297 £98.9 300
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Linear (minmod)




STRAKA DENSITY CURRENT TEST CASE: RESULTS
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CFL > 1: AN EXAMPLE

e (CFL<1) + (5t-order) = 3 halo transfers %

i
=

e (CFL<2) + (5t-orden) X 4 halo transfers
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SPLIT-EXPLICIT TIME STEPPING

Subcycle fast (acoustic) waves on a small e step
Simulate slow (advection) waves on a I@@r time step
1%t-order splitting error in equations O

Very easy to implement with chafacteristics

S U, | |u+c, u-c,

Slow
Implemented for risingsgktermal test case

— 3 fast time steps pefslow time step
— WENOS for slo ves & WENOS for fast waves: 38% less CPU
— WENOS for slow waves & WENO3 for fast waves: 59% less CPU
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SPLIT-EXPLICIT TIME STEPPING

K K
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WENOS5 for slow, WENO3 for fast

Is it worth it to use a cheaper method for fast waves?



SPLIT-EXPLICIT TIME STEPPING

10 fast time steps per slow time st&qﬁCFbQ.Q
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MuLTI-MOMENT FINITE-VOLUME METHOD

Evolve cell mean values & cell mean derivatives %
Reconstruction is more compact (fewer halo tr@s ers)
Assuming Jacobian is constant in time and @%orm In space

— Derivatives follow the same characteristics aswalues

Value + 15t-derivatives: 3-cell stencil gives 6t"-order accuracy
Value + 15t + 2"d-derivatives: 3-cef§tencil gives 9th-order accuracy

Multi-moment is generally meréraccurate than single-moment for
same order of accuracy
— Evidenced by Prather schéme results (Prather, 1984, JGR)

— Likely due to recon thion stencil width
— Coefficient MattQ'. [Ax?] will probably be better than O[(2Ax)?]
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MuLTI-MOMENT FINITE-VOLUME METHOD

e However, not certain how to couple with physics &%oundaries
— Physics alters cell means but not cell derivatives
— Other coupled models (sea ice, land, ocean, etc.)@a'y not alter derivatives
— Derivatives then decouple from cell means andhare no longer valid
— To use invalid derivatives would act againstthe physics alterations
— Probably leading to odd and unpredictable behavior!

Seemingly only two options

1. Reconstruct derivativesfrom altered cell means

— Actually, this is less sgaldble than traditional FV

— Likely forfeits the dceuracy gain of going multi-moment as well
2. Derive physics@ ameterizations that evolve derivatives

— Not an ea k, but possible
— Requires coupled models to do the same



GENUINELY MULTI-DIMENSIONAL: BICHARACTERISTICS

* Accounts for multi-dimensional nature of %Iﬁracterlstlcs
— Relaxes dependence on a rectangular me@
— Great isotropy on any mesh )
— Better tracer consistency with multisdimensional transport
— Greatly reduces error at cubed-sphere panel edges and corners

* Implementation is the key
— Acoustic waves propagatealong Mach cones

— Various levels of appraximation possible
— Experimentation.fequired to test approximations

e Possible applic&titon to characteristics-based DG methods
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LINEARIZED AcousTiC WAVE: MACH CONE

it

Trace acoustic wave back in time
from point P

th+1 +

Renders a slanted cone
Radius: c(t,,,-t)
Center: (x-V,(t,,;-t) , y-V,(t,1-1))

Computing state variables at a
point in time and space from

upstream values requires | tn -

integration in time! &

Advection waves @tegrated
as zero-radius I\ﬁlh cones
(solution is decoupled from 6)




BICHARACTERISTICS: PRACTICAL ISSUES

* |s it really worth it? %

 Perhaps Not %Qv

— Acoustic waves are not the dominant dynamical influence
— It’s not cheap

 Perhaps So
— Splitting error is particularlydlarge on the cubed-sphere

— Maybe the best way to achieve multi-dimensional consistency
with tracers

— We could increaséthe sophistication of the advection wave
integration

— Only way @Qve no splitting & large CFL in an explicit method

 Only expeﬁ-?nentation will decide
— Likely depends on the CFL used



Q
@?‘
OQ‘

Thanks for Yourﬁttentlon

Questlgns and Comments

\§2~
C)



HIGH-ORDER & HERMITE RECONSTRUCTION

e Many ways to reconstruct (e.g. 4th-order) %

— Use 4 4t-order accurate Ot-order deriv i{g(Trad. FV)

— Use 2 3"-order accurate 1st-order deri@ ives
& 2 4t-order accurate Ot-order dérivatives (Mult. Mom. FV)

 Evolve multiple derivs. & use f@r Lompact reconstruction
* Most obvious in DG with Ta\tor basis
* Also done in nodal metheds
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CUBED-SPHERE GEOMETRY

e Why cubed-sphere? <
— Logically rectangular: Easy to reconstruct to arhi ?;orders
— Equiangular Gnomonic: computational grid o@'nlform sguares
— Near uniform cell area globally
— Dimensional splitting trivial

e Difficulties when a stencil is requifed (e.g. FV, DG + HWENO)
— Panel edges & corners: coord,system changes, cell geometry changes
— High-order requires remapgping onto extended local panel grid

— Requires a halo exchange
— Changing Jacobian reduces accuracy of reconstructions
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ANOTHER OPTION FOR SPHERE

e Local stereographic projection %
— Might as well go with a geodesic grid (triangles ?‘
* |sotropy is not sacrificed if bicharacteristics a@sed
— Removes Jacobian gradient from the picture
— Removes the need for a halo swap at panel edges / corners

— Significantly complicates arbitrarilyhigh-order 2-D reconstruction
* May pre-compute Vandermonde-type matrix inversions (if non-singular!)
* Likely not practical for evolwngsmesh
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Homogeneous Fluid Equations

CHARACTERISTICS

5

Apply chain rule to flux

Flux Jacobian

Multiply equation bﬂ&”
Q.

Assume R'lg)constant & uniform

R, FQ)_,
A
Q |FIR
a ||
R L rRARER g
X
R‘l—+AR‘1£:O
X

Diagonalize flux Jacobian into EigeqVectors and Eigenvalues

= RAR™




CHARACTERISTICS

e Decoupled set of simple transport equations %

v
My, A X
e wNOT 4 0 o
an, . A, ; R
212,220 W=RQ=| 0" A=]0 4 O
- <4 | o o
— 4+ 4, —2=0
-

* After transporting, retgigve state variables from:

' — —

A
O\)Q‘ W =R'Q=|w,
@) W,




MuLTI-MOMENT FINITE-VOLUME METHOD

* Homogeneous Conservation Equations %
Q. FQ)_, @?‘
ét X

e Spatially Differentiate the Conservation tlons

=)

e Apply Chain Rule to Fluxes (Ch&kacteristic Form)

a(ag}a F R\ _,
al px AQ &

* “Freeze” theJacob&‘((;Constant in time, Uniform in space)

O\%g OX 0;(2):0




GENUINELY MULTI-DIMENSIONAL: BICHARACTERISTICS

2-D Characteristic Form 5Q % 5Q Za 5Q
A OQ X 0”Q V9

* Diagonalize both Jacobians —=A = RXA@Q~ il = A, =R,AR;”
Q R

* Create a directional Jacobian A(Q):'§cos€+ﬁsin6’

» Diagonalize the directional JageBian |A(9)=R(0)A(0)R(0)

e Left-Multiply by R 1(%5}1(9)§ + R_l(ﬁ)& % + R‘l(Q)AZ 28 =0

* |nsert R(B) R Q~
R(0)2 M OAROR ()2 R HO)AROR 0) 2 =0




GENUINELY MULTI-DIMENSIONAL: BICHARACTERISTICS
0

R‘l(é?)% +R(O)A, R(@)R%@)% +RM(O)A R(&))gk(e)g —

* “Freeze” the Jacobian & Pull R1(8) inside ’g\l@@grivatives
WO o ()W), SANE)
X

+ BX(H

B,(0)=R"(0)AR(E) B,(0)K0)ARE) W(O)=R* (@R
* Split B, and B, into a diagonalnatrix and the remaining entries

(6') o (0) (9) B, (#)=B, 5(0)+B,(9)

X (0)2N6) _
0‘3 o(0)=5=5)

OT’ _ B (e»)éW 6)

2

+ BZ(H) =0




GENUINELY MULTI-DIMENSIONAL: BICHARACTERISTICS

AN (6)
—a 2005 B

o

™\
"N\

* Integrate in time WP,M(@):W*,n (‘9)+fn+l 5(@%'

==

* Left-Multiply by R(8) |Qp....(6)= R(GFNN,(0)+ jt " R(0)S(0)dt

* Integratein 0 |Q, ., = j REWV. . ( d9+—_[2”jt i 0)dtde

* Predicts state var{?’@es at a point in space and time

— Takes into ac;o@t full multidimensional nature of the characteristics

— Contains sy “source term” which must be integrated in time
— Line integrals in O easily handled with quadrature



NH-ScALE GRAVITY WAVES TEST CASE

Initial Conditions (Skamarock & Klemp, 1994 MWR)

— Constant Brunt Vaisala frequency (102 s1) @
— hydrostatic balance Q-

— 20 m/s horizontal wind {)
— 102 °K potential temperature perturbation

Simulated for 3,000 s
Ax=1,000m, Az=100m
CFL=0.9 (At=0.255)
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NH-ScALE GRAVITY WAVES TEST CASE

o0 Q’TOO 150
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Linear (minmod)




NH-ScALE GRAVITY WAVES TEST CASE
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NH-ScALE GRAVITY WAVES TEST CASE
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Order of @n*acy matters, even for well-resolved waves
It nGiters even more for poorly resolved waves





