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OUTLINE

• Introduction

• Methods & Model
– Characteristics-Based Flux-Form Semi-Lagrangian

– Split-Explicit Time Stepping

• Future Work
– Multi-Moment CB-FFSL

– Genuinely Multi-Dimensional CB-FFSL
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SCALING,  EFFICIENCY,  &  EFFECTIVENESS

• Modern architectures: 100,000+ processing cores
– Models must scale massively parallel machines

– Pass as few messages as possible

• Scaling + … = Efficiency
– Time step

– Single-node efficiency

• Efficiency + … = An Effective Model
– Conservation

– Oscillations & Positivity

– Damping & Effective resolution

– Isotropy & Grid imprinting

– Properly balancing source terms and fluxes
• Geostrophic, Hydrostatic, Thermal wind
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THE EXTREMES OF EFFICIENCY

• Semi-implicit semi-Lagrangian

– Large time step

– High single-node efficiency

– Poor Scaling to 100,000+ processors

• Explicit Eulerian Galerkin Method

– Small time step

– Low single-node efficiency

– Good scaling to 100,000+ processors

• Explicit CB-FFSL Finite-Volume Method

– In between time step

– In between single-node efficiency

– Good scaling to 100,000+ processorsCOURTESY M
ATTHEW
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EXPLICIT INTEGRATORS,  SCALABILITY,  &  TIME STEP

• Multi-Stage (e.g. Runge-Kutta)

– Requires halo swap for each stage (more communication)

• Multi-Step (e.g. Adams-Bashforth)

– Only one halo swap per time step (less communication)

– CFL Limited to order unity

• Single-Stage Single-Step (i.e. Fully Discrete)

– Only one halo swap per time step (less communication)

– CFL larger than unity

– Often used in atmospheric transport

– Examples in transport
• Lin-Rood FFSL

• Conservative Semi-Lagrangian (CCS, SLICE, GeCORE, CSLAM)

• ADER (Arbitrary accuracy DErivative Riemann) method
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EXPLICIT SEMI-LAGRANGIAN:
FROM TRANSPORT TO NON-LINEAR EQUATIONS

• Method of Characteristics

– Transforms non-linear equation set into transport equations

– Characteristic variables materially conserved along 
characteristic trajectories

– Equation set must be hyperbolic

• Semi-Lagrangian Transport of Characteristics

– FFSL method guarantees conservation & allows flexibility
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• Dry, compressible, inviscid, & non-hydrostatic equations

• Conserves:

– Mass

– Momentum

– Potential Temperature (& therefore entropy)

• Gravity source term

• Equation set is hyperbolic; thus allows characteristics

DRY ATMOSPHERIC EULER EQUATIONS
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EXPLICIT EULERIAN FINITE-VOLUME
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• Fully Discrete: Time 
discretized by a direct 
integral

• We want to know the time-
averaged flux through each 
cell boundary

_

 



 



i

iavgi

nn F
V

t
QQ ,

1

   
0

z

QH

x

QF

t

Q













COURTESY M
ATTHEW

 N
ORMAN



CHARACTERISTICS-BASED FFSL  METHOD

What is the flux at the cell boundary?

F(Qi-2) F(Qi-1) F(Qi) F(Qi+1) F(Qi+2)

Wave Speed

Upwind Cell

Decompose into characteristics
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CHARACTERISTICS-BASED FFSL  METHOD

5-cell stencil

wi(x)

Reconstruct Characteristic Var. for Upwind Cell

wi-2 wi-1 wi wi+1 wi+2
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CHARACTERISTICS-BASED FFSL  METHOD

Integrate w(x) over Domain of Dependence

wi

xi-1/2-λΔt

__

Time integral cast into upstream spatial 
integral over domain of dependence
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• Adaptive use of stencils

– Create interpolants over multiple stencils

– Compute the oscillations of each interpolant

– Weight the most oscillatory interpolant the lowest

– Use the weighted sum of the interpolants

– Accuracy between 3rd and 5th order in the case below

WEIGHTED ESSENTIALLY NON-OSCILLATORY (WENO)  
RECONSTRUCTION (SHU 1999)

Wi-1Wi-2 Wi Wi+1 Wi+2

P5

P3,Left

P3,Center

P3,RightCOURTESY M
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• Initial Conditions

– Constant potential 
temperature

– Hydrostatic balance

– No wind

– 2 °K potential temperature 
perturbation

• Simulated for 1,000 s

• Δx = Δz = 150 m

• CFL=0.9  (Δt ≈ 0.38 s)

CONVECTIVE BUBBLE TEST CASE

Wicker & Skamarock (1998, MWR)
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CONVECTIVE BUBBLE TEST CASE

Linear (minmod) WENO (5th-order)
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STRAKA DENSITY CURRENT TEST CASE

• Initial Conditions (Straka et al, IJNMF, 1993)
– Constant potential temperature
– hydrostatic balance
– no wind
– -15 °K potential temperature perturbation

• Simulated for 900 s
• Δx = Δz = 50 m
• CFL=0.9  (Δt ≈ 0.13 s)
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STRAKA DENSITY CURRENT TEST CASE:  RESULTS

Linear (minmod)COURTESY M
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STRAKA DENSITY CURRENT TEST CASE:  RESULTS

WENO (5th-order)COURTESY M
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• (CFL ≤ 1)  +  (5th-order)  =  3 halo transfers

• (CFL ≤ 2)  +  (5th-order)  =  4 halo transfers

CFL  >  1:  AN EXAMPLE

COURTESY M
ATTHEW

 N
ORMAN



• Subcycle fast (acoustic) waves  on a smaller time step

• Simulate slow (advection) waves on a larger time step

• 1st-order splitting error in equations

• Very easy to implement with characteristics

– u,     u,     u+cs,     u-cs

• Implemented for rising thermal test case

– 3 fast time steps per slow time step

– WENO5 for slow waves & WENO5 for fast waves: 38% less CPU

– WENO5 for slow waves & WENO3 for fast waves: 59% less CPU

SPLIT-EXPLICIT TIME STEPPING

Slow Fast

COURTESY M
ATTHEW

 N
ORMAN



SPLIT-EXPLICIT TIME STEPPING

WENO5 for slow, WENO5 for fast WENO5 for slow, WENO3 for fast

Is it worth it to use a cheaper method for fast waves?
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SPLIT-EXPLICIT TIME STEPPING

10 fast time steps per slow time step:  CFL=9.9
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• Evolve cell mean values & cell mean derivatives

• Reconstruction is more compact (fewer halo transfers)

• Assuming Jacobian is constant in time and uniform in space
– Derivatives follow the same characteristics as values

• Value + 1st-derivatives: 3-cell stencil gives 6th-order accuracy

• Value + 1st + 2nd-derivatives: 3-cell stencil gives 9th-order accuracy

• Multi-moment is generally more accurate than single-moment for 
same order of accuracy
– Evidenced by Prather scheme results (Prather, 1984, JGR)

– Likely due to reconstruction stencil width

– Coefficient Matters: O*∆x2] will probably be better than O*(2∆x)2]

MULTI-MOMENT FINITE-VOLUME METHOD
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• However, not certain how to couple with physics & boundaries
– Physics alters cell means but not cell derivatives

– Other coupled models (sea ice, land, ocean, etc.) may not alter derivatives

– Derivatives then decouple from cell means and are no longer valid

– To use invalid derivatives would act against the physics alterations

– Probably leading to odd and unpredictable behavior!

Seemingly only two options

1. Reconstruct derivatives from altered cell means
– Actually, this is less scalable than traditional FV

– Likely forfeits the accuracy gain of going multi-moment as well

2. Derive physics parameterizations that evolve derivatives
– Not an easy task, but possible

– Requires coupled models to do the same

MULTI-MOMENT FINITE-VOLUME METHOD
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• Accounts for multi-dimensional nature of characteristics

– Relaxes dependence on a rectangular mesh

– Great isotropy on any mesh

– Better tracer consistency with multi-dimensional transport

– Greatly reduces error at cubed-sphere panel edges and corners

• Implementation is the key

– Acoustic waves propagate along Mach cones

– Various levels of approximation possible

– Experimentation required to test approximations

• Possible application to characteristics-based DG methods

GENUINELY MULTI-DIMENSIONAL:  BICHARACTERISTICS
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LINEARIZED ACOUSTIC WAVE:  MACH CONE

Trace acoustic wave back in time 
from point P

Renders a slanted cone

Radius: cs(tn+1-t)

Center: (x-Vx(tn+1-t)  ,  y-Vy(tn+1-t))

Computing state variables at a 
point in time and space from 
upstream values requires 
integration in time!

Advection waves are integrated 
as zero-radius Mach cones 
(solution is decoupled from θ)
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• Is it really worth it?

• Perhaps Not

– Acoustic waves are not the dominant dynamical influence

– It’s not cheap

• Perhaps So

– Splitting error is particularly large on the cubed-sphere

– Maybe the best way to achieve multi-dimensional consistency 
with tracers

– We could increase the sophistication of the advection wave 
integration

– Only way to have no splitting & large CFL in an explicit method

• Only experimentation will decide

– Likely depends on the CFL used

BICHARACTERISTICS:  PRACTICAL ISSUES
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Thanks for Your Attention

Questions and Comments
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• Many ways to reconstruct (e.g. 4th-order)

– Use  4  4th-order accurate  0th-order derivatives (Trad. FV)

– Use  2  3rd-order accurate  1st-order derivatives
&      2  4th-order accurate  0th-order derivatives (Mult. Mom. FV)

• Evolve multiple derivs. & use for compact reconstruction

• Most obvious in DG with Taylor basis

• Also done in nodal methods

HIGH-ORDER &  HERMITE RECONSTRUCTION
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• Why cubed-sphere?
– Logically rectangular: Easy to reconstruct to arbitrary orders

– Equiangular Gnomonic: computational grid of uniform squares

– Near uniform cell area globally

– Dimensional splitting trivial

• Difficulties when a stencil is required (e.g. FV, DG + HWENO)
– Panel edges & corners: coord. system changes, cell geometry changes

– High-order requires remapping onto extended local panel grid

– Requires a halo exchange

– Changing Jacobian reduces accuracy of reconstructions

CUBED-SPHERE GEOMETRY
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• Local stereographic projection
– Might as well go with a geodesic grid (triangles)

• Isotropy is not sacrificed if bicharacteristics are used

– Removes Jacobian gradient from the picture

– Removes the need for a halo swap at panel edges / corners

– Significantly complicates arbitrarily high-order 2-D reconstruction

• May pre-compute Vandermonde-type matrix inversions (if non-singular!)

• Likely not practical for evolving mesh

ANOTHER OPTION FOR SPHERE
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• Homogeneous Fluid Equations

• Apply chain rule to flux

• Diagonalize flux Jacobian into Eigenvectors and Eigenvalues

• Multiply equation by R-1

• Assume R-1 is constant & uniform

CHARACTERISTICS

 
0

x

QF

t

Q









0
x

Q

Q

F

t

Q











 Flux Jacobian

1 RR
Q

F




01  

x

Q
RR

t

Q









011  

x

Q
R

t

Q
R









   
0

11




x

QR

t

QR







COURTESY M
ATTHEW

 N
ORMAN



• Decoupled set of simple transport equations

• After transporting, retrieve state variables from:

CHARACTERISTICS
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• Homogeneous Conservation Equations

• Spatially Differentiate the Conservation Equations

• Apply Chain Rule to Fluxes (Characteristic Form)

• “Freeze” the Jacobian (Constant in time, Uniform in space)

MULTI-MOMENT FINITE-VOLUME METHOD
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• 2-D Characteristic Form

• Diagonalize both Jacobians

• Create a directional Jacobian

• Diagonalize the directional Jacobian

• Left-Multiply by R-1(θ)

• Insert R(θ) R-1(θ)

GENUINELY MULTI-DIMENSIONAL:  BICHARACTERISTICS
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• “Freeze” the Jacobian & Pull R-1(θ) inside the derivatives

• Split Bx and Bz into a diagonal matrix and the remaining entries
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• Integrate in time

• Left-Multiply by R(θ)

• Integrate in θ

• Predicts state variables at a point in space and time
– Takes into account full multidimensional nature of the characteristics

– Contains a messy “source term” which must be integrated in time

– Line integrals in θ easily handled with quadrature
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NH-SCALE GRAVITY WAVES TEST CASE

• Initial Conditions (Skamarock & Klemp, 1994, MWR)
– Constant Brunt Vaisala frequency (10-2 s-1)

– hydrostatic balance

– 20 m/s horizontal wind

– 10-2 °K potential temperature perturbation

• Simulated for 3,000 s

• Δx = 1,000 m , Δz = 100 m

• CFL=0.9  (Δt ≈ 0.25 s)
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NH-SCALE GRAVITY WAVES TEST CASE

Linear (minmod)COURTESY M
ATTHEW

 N
ORMAN



NH-SCALE GRAVITY WAVES TEST CASE

WENO (5th-order)COURTESY M
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NH-SCALE GRAVITY WAVES TEST CASE

50 Grid 
Points

Order of accuracy matters, even for well-resolved waves
It matters even more for poorly resolved waves

10 Grid 
Points
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