

Construction and Performance of Exponential Integrators Mayya Tokman (*joint work with John Loffeld*) *University of California, Merced*

Outline:

- > Motivation
- > Why Exponential Integrators?
- Building Blocks for Constructing an Exponential Integrator for General Nonlinear Problems
 - * How are the methods constructed
 - * Order conditions
 - * *Performance and adaptivity*
- > Conclusions and future work

General Nonlinear Initial Value Problem for System of ODEs:

Difficult to solve numerically when it is stiff!

What is Stiffness? And Where Do We Encounter It?

> There are many definitions of stiffness, e.g.

Lambert'91: A problem is stiff on a particular interval if a numerical method is forced to use an excessively small step size in relation to the smoothness of the solution.

> Stiff problems are encountered in many fields, e.g.

Plasma physics

- Combustion
- Fluid Mechanics

General Nonlinear Problem:

$$\frac{dy}{dt} = f(y) \qquad y \in \mathbb{R}^N$$
$$y(t_0) = y_0 \qquad N >> 1$$

> stiff, where stiffness can come from either linear OR nonlinear part of f(y) = Ly + N(y)

 $\succ \Delta t_{Stability} << \Delta t_{Accuracy}$

> no efficient preconditioner available for implicit methods.

Elementary Example:

1D Heat Equation
$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2}$$

Discretized in space
 $\frac{dU}{dt} = AU$
 $A = \frac{\nu}{\Delta x^2} \begin{bmatrix} -2 & 1 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \dots & 1 & -2 \end{bmatrix}$
Explicit scheme
Implicit scheme
 $U^{n+1} = U^n + A\Delta t U^{n+1}$

 $U^{n+1} = U^n + A\Delta t U^n \qquad U^{n+1} = U^n + A\Delta t U^{n+1}$ $U^{n+1} = (I + A\Delta t) U^n \qquad U^{n+1} = (I - A\Delta t)^{-1} U^n$

But there is also exact solution!

$$U^{n+1} = e^{A\Delta t} U^n$$

Numerical Difficulties with Stiffness:

Eigenvalues of A place stability restriction on the time step for the explicit scheme $4\nu \left(\frac{\pi k}{2}\right)^2$

Explicit scheme

$$\mu_k = -\frac{4\nu}{(\Delta x)^2} \left(\sin\left(\frac{\pi k}{2(N+1)}\right) \right)$$

$$m+1 = (I + AAA)III$$

$$U^{n+1} = (I + A\Delta t)U$$

Stability requirement

$$|1 + \mu_k \Delta t| < 1$$

Implicit scheme VS. Exponential integrator

$$U^{n+1} - (I - A\Delta t)^{-1}U^n$$
$$U^{n+1} = e^{A\Delta t}U^n$$

Both A-stable but...

Implicit vs. Exponential schemes:

Since A is large we need to approximate $(I - A\Delta t)^{-1}b = (I + (A\Delta t) + (A\Delta t)^2 + (A\Delta t)^3 + ...)b$ or

$$e^{A\Delta t}b = \left(I + \frac{(A\Delta t)}{1!} + \frac{(A\Delta t)^2}{2!} + \frac{(A\Delta t)^3}{3!} + \dots\right)b$$

Approximation method of choice for large nonsymmetric matrices is Krylov subspace projection

$$S_k = span\{b, Ab, ..., A^{k-1}b\}$$

(e.g. to invert the matrix we can use GMRES or FOM)

Convergence of Krylov iteration to estimate f(A)b depends on ||b||, eigenvalues of A *and function* f(x)!

Test problem – 1D Brusselator:

$$\frac{du_i}{dt} = 1 + u_i^2 v_i - 4u_i + \alpha \frac{u_{i-1} - 2u_i + u_{i+1}}{(\Delta x)^2}$$
$$\frac{dv_i}{dv_i} = 2 + \frac{v_{i-1} - 2v_i + v_{i+1}}{(\Delta x)^2} + \frac{v_{i-1} - 2v_i + v_{i+1}}{(\Delta x)^2}$$

$$\frac{dv_i}{dt} = 3u_i - u_i^2 v_i + \alpha \frac{v_{i-1} - 2v_i + v_{i+1}}{(\Delta x)^2}, \quad i = 1, ..., N$$

Jacobian matrix:

$$J = \begin{bmatrix} diag(2u_iv_i - 4) & diag(u_i^2) \\ diag(3 - u_iv_i) & diag(-u_i^2) \end{bmatrix} + \frac{\alpha}{(\Delta x)^2} \begin{bmatrix} L & 0 \\ 0 & L \end{bmatrix}$$
$$L = \begin{bmatrix} -2 & 1 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \dots & 1 & -2 \end{bmatrix}$$

Krylov iteration convergence comparison:

Tolerance = 1E-5

Problem size, 2N	GMRES $(I - A\Delta t)^{-1}b$	FOM $(I - A\Delta t)^{-1}b$	$e^{A\Delta t}b$	$\psi_{21}(A\Delta t)b$	$\psi_{22}(A\Delta t)b$
200	92	85	35	27	19
400	187	174	70	55	38
800	382	359	140	112	78

Similar result also holds for Jacobian calculated at different times and for other examples.

Integrators for Nonlinear Problems:

- Building an integrator while minimizing the number of Krylov projections
- > Order conditions derivation Butcher's work

> *Performance and adaptivity*

Integrators for Nonlinear Problems:

- Building an integrator while minimizing the number of Krylov projections
- > Order conditions derivation Butcher's work

> *Performance and adaptivity*

Building Exponential Integrators for Nonlinear Problems:

$$y' = f(y) = f(y_0) + \frac{Df}{Dy}(y_0)(y - y_0) + R(y)$$

$$R(y) = f(y) - f(y_0) - \frac{Df}{Dy}(y_0)(y - y_0)$$
Denote the Jacobian matrix $A_0 = \frac{Df}{Dy}(y_0)$

Use the integrating factor e^{nA_0} to compute the integral form of the solution:

$$y(t_0 + h) = y_0 + \frac{e^{hA_0} - I}{hA_0} hf(y_0) + \int_{t_0}^{t_0 + h} e^{(t_0 + h - s)A_0} R(y(s)) ds$$

Building Exponential Integrators:

$$y(t_0 + h) = y_0 + \frac{e^{hA_0} - I}{hA_0} hf(y_0) + \int_{t_0}^{t_0 + h} e^{(t_0 + h - s)A_0} R(y(s)) ds$$

To construct an exponential method approximate R(y(s)) with a polynomial.

This results in a expression for an approximate solution which involves functions 1

$$\phi_k(z) = \int_0^z \frac{e^{(1-s)z}}{(k-1)!} \frac{s^{k-1}}{(k-1)!} ds$$

or their linear combinations, e.g.

$$\psi_{\gamma k}(z) = \int_0^1 e^{(1-s)z} \begin{pmatrix} \gamma s \\ k \end{pmatrix} ds$$

Examples of EIs – EPIRK3 (*Tokman'06***):**

$$k_{1} - y_{0} + \psi_{1}(\frac{h}{2}f')hf(y_{0})$$

$$y_{1} = y_{0} + \psi_{1}(hf')hf(y_{0}) + \frac{1}{3}\psi_{2}(hf')R(k_{1})$$

$$\psi_{1}(z) = \frac{e^{z} - 1}{z}$$

$$\psi_{2}(z) = 2\frac{e^{z} - (1 + z)}{z^{2}}$$

Third-order scheme EPIRK3 – 2 Krylov projections

Computational Complexity of EI: *NOTE: Krylov projections account for the majority of computational time!*

Therefore to construct an efficient EI

> minimize number of Krylov projections needed each time step

minimize the number of iterations needed for each Krylov projection **Computational Complexity of EI:** *NOTE: Krylov projections account for the majority of computational time!*

Therefore to construct an efficient EI

> minimize number of Krylov projections needed each time step

minimize the number of iterations needed for each Krylov projection

Examples of EIs – Lawson scheme:

Fourth-order scheme LWS4 – 4 Krylov projections

Examples of EIs – Hochbruck-Osterman:

$$g(y) = f(y) - A_n y$$

$$k_1 = e^{hA_n} y_n + \frac{1}{2} \phi_1(hA_n/2)hg(y_n)$$

$$k_2 = e^{hA_n} y_n + \phi_1(hA_n)hg(k_1)$$

$$y_{n+1} = e^{hA_n} y_n + \phi_1(hA_n)hg(y_n)$$

$$+ \phi_3(hA_n)h(g(k_2) - 14g(y_n) + g(k_1))$$

Fourth-order scheme EROW4 – 4 Krylov projections

Examples of EIs – Hochbruck-Lubich:

$$k_{1} = \phi_{1}(hA_{n}/3)f(y_{0}) \qquad u_{7} = y_{0} + hw_{7}$$

$$k_{2} = \phi_{1}(2hA_{n}/3)f(y_{0}) \qquad d_{7} = f(u_{7}) - f(y_{0}) - hAw_{7}$$

$$k_{3} = \phi_{1}(hA_{n})f(y_{0}) \qquad k_{7} = \phi_{1}(hA/3)d_{7}$$

$$w_{4} = -\frac{7}{300}k_{1} + \frac{97}{150}k_{2} - \frac{37}{300}k_{3} \qquad y_{1} = y_{0} + h(k_{3} + k_{4} - \frac{4}{3}k_{5})$$

$$u_{4} = y_{0} + hw_{4} \qquad + k_{6} + \frac{1}{6}k_{7}$$

$$k_{4} = \phi_{1}(hA_{n}/3)d_{4}$$

$$k_{5} = \phi_{1}(2hA_{n}/3)d_{4}$$

$$k_{6} = \phi_{1}(hA)d_{4}$$

$$w_{7} = \frac{59}{300}k_{1} - \frac{7}{75}k_{2} + \frac{269}{300}k_{3} + \frac{2}{3}(k_{4} + k_{5} + k_{6})$$

Fourth-order scheme EXP4 – 3 Krylov projections

Examples of EIs – Tokman:

$$R(y) = f(y) - f(y_n) - A_n(y - y_n)$$

$$k_1 = y_n + a_{11}\psi_1(hA_n/3)hf(y_n)$$

$$k_2 = y_n + a_{21}\psi_1(2hA_n/3)hf(y_n) + a_{22}\psi_2(2hA_n/3)hR(k_1)$$

$$y_{n+1} = y_n + b_1\psi_1(hA_n)hf(y_n) + b_2\psi_2(hA_n)hR(k_1)$$

$$+ b_3\psi_3(hA_n)h(-2R(k_1) + R(k_2))$$

$$\psi_1(z) = \phi_1(z)$$

$$\psi_2(z) = 3\phi_2(z)$$

$$\psi_3(z) = 3/2(-\phi_3(z) + 6\phi_2(z))$$

Fourth-order scheme EPIRK4 – 3 Krylov projections

Computational Complexity of EI: *NOTE: Krylov projections account for the majority of computational time!*

Therefore to construct an efficient EI

> minimize number of Krylov projections needed each time step

minimize the number of iterations needed for each Krylov projection (work very much in progress...)

What functions should we project?

$$\phi_k(z) = \frac{1}{k!} + \frac{z}{(k+1)!} + \dots + \frac{z^n}{(k+n)!} + \dots$$

Numerical experiments show that Arnoldi iteration convergence is correlated with Taylor series convergence.

Consider a linear combination of function

$$k = 3$$

$$\chi_3(z) = \phi_3(z) + a_2\phi_2(z) + a_1\phi_1(z)$$

with Taylor coefficients

1

$$p_2(n) = \frac{1}{(n+3)!} \{1 - a_2(n+3) - a_1(n+3)(n+2)\}$$

What functions should we project?

Iteration $\#$	Residual of $\phi_4(z)$	Residual of $\chi_4(z)$
1	1.2812e-01	2.2956e-01
2	5.8218e-03	3.9212e-03
3	2.2079e-04	3.3878e-05
4	7.0092e-06	2.0108e-08
5	2.0214e-07	3.0619e-09
6	5.1313e-09	4.9313e-10
7	1.2053e-10	5.4611e-11
8	2.5530e-12	3.2960e-12
9	4.9000e-14	1.4000e-13
10	1.0000e-15	2.0000e-14

Ideas for New Integrators:

$$\begin{split} Y_1 &= y_0 + a_{11}\chi_1(c_{11}hf'(y_0))hf(y_0) \\ Y_2 &= y_0 + a_{21}\chi_1(c_{21}hf'(y_0))hf(y_0) + a_{22}\chi_2(c_{22}hf'(Y_1))R(Y_1) \\ y_1 &= y_0 + \chi_1(hf'(y_0))hf(y_0) + b_1\chi_2(hf'(Y_1))R(Y_1) \\ &+ b_2\chi_3(hf'(Y_2))(d_2R(Y_2) - d_1R(Y_1)) \end{split}$$

 $\chi_k(z), R(Y_k)$ are chosen to optimize Krylov projections

Integrators for Nonlinear Problems:

- Building an integrator while minimizing the number of Krylov projections
- Order conditions derivation Butcher's work

> *Performance and adaptivity*

Performance:

2D Brusselator

$$\frac{\partial u}{\partial t} = 1 + uv^2 - 4u + \alpha \nabla^2 u$$

$$\frac{\partial u}{\partial t} = 3u - u^2 v + \alpha \nabla^2 v$$

$$2D \text{ Gray-Scott Equation}$$

$$\frac{\partial u}{\partial t} = -uv^2 + 0.04(1 - u) + 0.2\nabla^2 u$$

$$\frac{\partial v}{\partial t} = uv^2 + 0.1v + 0.1\nabla^2 v$$

2D Allen-Cahn Equation
$$\frac{\partial u}{\partial t} = u - u^3 + 0.1 \nabla^2 u$$

2D Allen-Cahn Equation:

2D Brusselator System:

2D Gray-Scott System:

Adaptivity:

Two level time stepping adaptivity

Error estimator using embedded methods
 Optimization of the Krylov subspace size

Efficiency is ensured by effectively coupling the two stages of adaptivity.

Current and Future Work:

Thorough comparisons of EIs and standard integrators performance on both sample problems and real applications

> Butcher's results will be used to develop new integrators and automate derivation of order conditions

Publicly available serial and parallel implementations of EIs is under development

> Applications: nonlinear optics, plasma physics, biomodeling, etc.