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II. What the rocks tell us 

Behold, I show you a mystery: 
we shall not all sleep, 
but we shall all be changed, in a moment, 
in the twinkling of an eye, 
at the last trump: 
for the trumpet shall sound, 
and the rocks shall be analyzed, 
and we shall tell of a Snowball! 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The mad Snowballers 



Glacial rocks are overlain with rocks that suggest an 
extremely hot and moist climate.  



Rocks show evidence of glaciers at sea level at the equator 
about 600 million years ago. 



The occurrence of banded iron formaEons may suggest the 
enEre ocean was covered in ice.  



II. Energy Balance Models: Simple Global Climate Models 



Sellers, W.D., 1969. A global climaEc model 
based on the energy balance of the Earth‐
atmosphere system.  

Budyko, M.I., 1969. The effect of solar radiaEon 
variaEons on 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climate of the Earth.  

North, G. R, 1975: Theory of energy‐balance 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models. 

Early Climate Theorists 



The nonlinear mathemaEcs of an energy balance model. 

Solar RadiaEon 

Albedo: reflected light increases 
if T(x) drops below freezing! 

LinearizaEon of Outgoing 
Terrestrial RadiaEon 

Assume that atmospheric and oceanic 
movements smooth the temperature profile  

Atmospheric and oceanic heat transport. 



CO2 draw down  

Runaway ice-albedo  
feedback 

Very low weathering allows CO2 to build up to 
~10% of atmosphere over 1-10 million years 

Tropical ice melts and 
reverse ice-albedo 
feedback occurs  

Energy Balance Models produces a bifurcaEon diagram that 
might explain the geological observaEons.  



III. Ice Growth and Flow 



Stefan, J., 1889: Uber die Theorie der Eisbildung, 
insbesondere uber die Eisbildung im Polarmeere. 

Herr Stefan invented the famous Stefan condiEon while 
studying sea ice! 



atmosphere 

ocean 

ice 

a coordinate system in which a constant spot in the ice is a constant z. In this coordinate system the upper
boundary will be moving as well as the lower boundary, but we will only need to solve a diffusion equation
within the ice sheet. I think the latter choice simplifies things and will proceed using it.

Let z be the spatial coordinate and let it increase as you go downward in the ice. Let h1 denote the
position of the upper boundary of the ice (interface with air) and h2 denote the position of the lower
boundary of the ice (interface with water). We’re thinking of a constant z as being a constant position in
the ice, so both boundaries are moving through z, even at steady-state. Between the boundaries the simple
diffusion equation applies

Tt = κTzz.

The boundary conditions are T (h1) = Ts and T (h2) = Tf . Ts is the surface temperature which we will
assume is determined by meteorological processes and is constant on the long timescales we care about
here.

Writing equations for the boundaries, Stefan conditions, is slightly more challenging. The upper
boundary is simply constrained by net sublimation rate. If w is the net sublimation rate, then we have

dh1

dt
= w. (3)

To reiterate, the upper boundary moves downward through the coordinate system at a constant rate that is
determined by the net sublimation at the top of the ice sheet. We need to consider energy balance at the
bottom of the ice sheet to get the second Stefan condition. We can do this as follows

−ρiLi
dh2

dt
=−ρiCpiκ

dT
dz

∣∣∣
h−2

+Fgeo. (4)

The left hand side represents heat released by freezing as the ice extends into the liquid water. The first
term on the right hand side represents heat flux into the ice interior (remember that dT

dt

∣∣∣
h−2

> 0 since the

positive z direction is downward). The second term on the right hand side represents geothermal heat flux.
We now have a PDE for temperature within the ice, two boundary conditions at moving boundaries,

and two Stefan conditions to constrain the moving boundaries, so the system is solvable.

3.1 Low Stefan Number Case
The traditional Stefan number is defined as

S =
Li

Cpi(Tf −Ts)
.

When S is large, solidification is slow compared to diffusion. In this case we can neglect the time derivative
in the diffusion equation and approximate the temperature within the ice as a linear function of position in
ice. Using Tf −Ts ≈ 30-40 K, we get S ≈ 3− 5. Therefore it is a reasonable starting point is to assume
that S is large, although we can expect some small error due to our approximation.

Since T is linear in z, dT
dz is constant within the ice so that

dT
dz

∣∣∣
h−2

=
Tf −Ts

h2−h1
=

∆T
h

,

where h≡ h2−h1 is the thickness of the ice sheet and ∆T ≡ Tf −Ts. Using this we can combine the two
Stefan conditions (Eqs. 3 and 4) to get

dh
dt

=
Cpiκ∆T

Lih
−w−

Fgeo

ρiLi
. (5)
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neglecEng 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Finding an ODE for ice thickness  
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For ΔT=30-40 K, S=3-5. Solidification rate is small, 
so assume temperature field is linear. 

S is the ratio of the latent heat of solidification to the 
sensible heat required to cool the newly formed solid to 
the atmospheric temperature. 

The upper and lower boundary conditions become an ODE for ice depth. 
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diffusion equation applies

Tt = κTzz.

The boundary conditions are T (h1) = Ts and T (h2) = Tf . Ts is the surface temperature which we will
assume is determined by meteorological processes and is constant on the long timescales we care about
here.

Writing equations for the boundaries, Stefan conditions, is slightly more challenging. The upper
boundary is simply constrained by net sublimation rate. If w is the net sublimation rate, then we have

dh1

dt
= w. (3)

To reiterate, the upper boundary moves downward through the coordinate system at a constant rate that is
determined by the net sublimation at the top of the ice sheet. We need to consider energy balance at the
bottom of the ice sheet to get the second Stefan condition. We can do this as follows

−ρiLi
dh2

dt
=−ρiCpiκ

dT
dz

∣∣∣
h−2

+Fgeo. (4)

The left hand side represents heat released by freezing as the ice extends into the liquid water. The first
term on the right hand side represents heat flux into the ice interior (remember that dT

dt

∣∣∣
h−2

> 0 since the

positive z direction is downward). The second term on the right hand side represents geothermal heat flux.
We now have a PDE for temperature within the ice, two boundary conditions at moving boundaries,

and two Stefan conditions to constrain the moving boundaries, so the system is solvable.

3.1 Low Stefan Number Case
The traditional Stefan number is defined as

S =
Li

Cpi(Tf −Ts)
.

When S is large, solidification is slow compared to diffusion. In this case we can neglect the time derivative
in the diffusion equation and approximate the temperature within the ice as a linear function of position in
ice. Using Tf −Ts ≈ 30-40 K, we get S ≈ 3− 5. Therefore it is a reasonable starting point is to assume
that S is large, although we can expect some small error due to our approximation.

Since T is linear in z, dT
dz is constant within the ice so that

dT
dz

∣∣∣
h−2

=
Tf −Ts

h2−h1
=

∆T
h

,

where h≡ h2−h1 is the thickness of the ice sheet and ∆T ≡ Tf −Ts. Using this we can combine the two
Stefan conditions (Eqs. 3 and 4) to get

dh
dt

=
Cpiκ∆T

Lih
−w−

Fgeo

ρiLi
. (5)
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Solving for steady-state ice thickness  

Under the low Stefan number approximation, we have now combined all of our information into a single
differential equation for the evolution of the height of the ice sheet. We can now use this equation to
understand the behavior of the system.

First consider the equatorial case, in which there is net sublimation and w > 0. We expect w to be on
the order of 1 cm yr−1 which is 3×10−10 m s−1 whereas Fgeo

ρiLi
≈ 2×10−11 m s−1, so the geothermal heat

flux should be negligible for expected equatorial net sublimation rates. In any case, assuming we start
with relatively thin ice, the first term on the right hand side of Eq. 5 will be large and the ice thickness will
grow with time. Eventually the system will reach steady state at an ice thickness of (after some algebra)

h =
k∆T

ρiLiw+Fgeo
,

where k = ρiCpiκ. This solution remains valid when w = 0, but h approaches infinity as w approaches
−Fgeo

ρiLi
and for w <−Fgeo

ρiLi
the solution is not valid. Returning to Eq. 5 we see that dh

dt is always positive for

w <−Fgeo
ρiLi

so that the ice keeps growing indefinitely.

3.2 Effects of Ocean Heat Transport
In the previous section I neglected the effects of ocean heat transport. The reasoning was that in a Snowball
the entire ocean should be at the freezing temperature of water so that currents wouldn’t be able to move
heat even if they existed. Here I will relax this approximation, to understand the effect ocean heat transport
would have if it could occur, for example because of small temperature differences (the heat flux wouldn’t
have to be very large to be important). Let’s reconsider the second Stefan condition (Eq. 4), but subtract
from the heat balance a term representing ocean heat transport

−ρiLi
dh2

dt
=−ρiCpiκ

dT
dz

∣∣∣
h−2

+Fgeo−Focn.

The additional ocean heat transport can remove some of heat produced by freezing from the system we are
considering and transfer it to other regions, for example where melting is occurring. It seems unlikely that
heat would be transported into regions where freezing is occurring and it’s also unlikely that more heat
will be removed than is produced by freezing, so let’s assume that

Focn = αρiLi
dh2

dt
,

where α is a fraction between zero and one. In this case the second Stefan condition reduces to

−(1−α)ρiLi
dh2

dt
=−ρiCpiκ

dT
dz

∣∣∣
h−2

+Fgeo.

Using this we can repeat the derivation from the previous section to find

h =
k∆T

ρiLi(1−α)w+Fgeo
.

Therefore ocean heat transport reduces the thinning or thickening of the ice caused by net sublimation or
net accumulation. Efficient ocean heat transport removes this effect altogether so that net sublimation and
net accumulation do not effect ice sheet height.
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II. Large net precipitation   
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h grows with time! 

1 cm/yr for 1 million years is 10 km of ice! 



Figures from Goodman (2006) 

Sea Ice Elevator 
[Hoffman and Schrag, 1999] 

Ice flow from higher latitudes 
[Goodman and Pierrehumbert, 2003] 

Equator Pole Pole Equator 

Flow of sea glaciers will remove accumulation issue.  



IV. Internal and Surface Ice Temperature SoluEon  

z 

t 

z=0 

z=H 

Freezing Point 

Time 

Ice Surface 
We care because melting 
occurs at noon 



Fourier, J., 1826: Théorie du mouvement de la 
chaleur dans les corps solides.  

Monsieur Fourier solved for the temperature within the 
Earth when it is forced with a varying temp. BC at the surf.  



Stokes, G., 1851: On the effect of the internal 
fricEon of fluids on the moEon of pendulums. 

Mister Stokes found an exact soluEon to the Navier‐Stokes 
equaEons of the same mathemaEcal form. 

Viscous Fluid 

Transversely Jiggling Plate 

Stokes’ Second Problem 



The heat equaEon between two infinite plane‐parallel 
boundaries with a Eme‐varying Dirichlet BC  

EquaEon: 

Boundary CondiEons: 

Ansatz: 



The heat equaEon between two infinite plane‐parallel 
boundaries with a Eme‐varying Dirichlet BC  

The soluEon: 

With: 

PenetraEon depth: 



Considering the soluEons through thick and thin. 

For thick ice, get exponenEally‐damped waves propagaEng into ice interior 

For thin ice, boundary layer extends through ice 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A sea ice scheme must resolve the penetraEon depth in 
order to produce a reasonable surf. temp. diurnal cycle 

penetraEon depth 

typical model  
resoluEon 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Low sea ice verEcal resoluEon can lead to false Snowball 
Earth deglaciaEons in global climate models! 



Summary and Conclusions 

Strange and mysterious “Snowball Earth” events happened about 
600, 700, and 2200 million years ago.  

Math people can help rock people understand the 
story the rocks tell. 

Using math and thinking allows us to understand things about the 
Snowball that we cannot by simply running global climate models. 


