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2.1 Introduction

The oceans are a significant store of carbon within the
Earth systems. They readily exchange carbon in the form
of CO2 with the atmosphere and provide an important
sink for CO2. Human activities are releasing CO2 that
would otherwise be locked away from the atmosphere in
geological reservoirs. Because of these changes,
atmospheric concentrations of CO2 are higher today than
for at least 420000 years (IPCC 2001).

Approximately one-half of the CO2 produced by fossil fuel
burning and cement production as a result of human
activities in the past 200 years is being taken up by the
oceans. This absorption process is chemically changing the
oceans, in particular increasing its acidity. In this section we
consider the evidence of increased uptake of CO2 by the
oceans over the past century and how this reflects changes
in atmospheric CO2 levels and ocean acidity. We provide
an overview of the chemical processes involved as CO2
dissolves in the oceans; how ocean chemistry responds to
changes in CO2 levels; and an introduction to how these
changes may affect the biological systems, which are
considered further in Sections 3 and 4.

2.2 The impact of increasing CO2 on the 
chemistry of ocean waters

2.2.1 The oceans and the carbon cycle

Carbon exists throughout the planet in several ‘reservoirs’
and in a variety of forms (Figure 1). The exchange of
carbon between the important reservoirs of the
biosphere, atmosphere and oceans is known as the
carbon cycle. One of the more commonly known
exchanges of carbon in this cycle is its absorption, in the
form of CO2, by trees and herbaceous plants on land
during photosynthesis, also known as primary production
(the production of organic from inorganic carbon), and
subsequent release back into the atmosphere by
respiration. Carbon dioxide also dissolves in the oceans
and can be released back into the atmosphere, making
the oceans a considerable point of exchange in the
carbon cycle. Organisms within the surface ocean
exchange CO2 in much the same way as the biological
processes on land. Although the biological uptake of CO2
per unit area of the surface oceans is lower than that in
most terrestrial systems, the overall biological absorption
is almost as large as that in terrestrial environment. This is
because the surface area of the oceans is so much larger
(Field et al 1998). 

The oceans are a substantial carbon reservoir. When
measured on short timescales of hundreds of years,
their greatest exchanges of carbon are with the
atmosphere. The pre-industrial oceanic carbon reservoir
has been estimated at about 38 000 Gt, compared with
about 700 Gt in the atmosphere and somewhat less
than 2 000 Gt in the terrestrial biosphere
(approximately 700 Gt as biomass and 1 100 Gt as soil)
(Brovkin et al 2002). These reservoirs exchange
quantities of carbon each year that are large relative to
the amount of carbon stored within them. Figure 1
illustrates that the oceans are acting as an important
carbon sink, absorbing 2 Gt C per year more CO2 than
they are releasing into the atmosphere. This is small in
comparison to the amount of carbon that is cycled
between the different reservoirs but is a significant
proportion of the 6 Gt C per year released into the
atmosphere from human activity (Figure 1).

The carbon buried in some reservoirs, such as rocks and
organic-rich shale, exchanges with the other reservoirs
on geologically long timescales. As a result, carbon in
these reservoirs will not affect the atmosphere or oceans
on short timescales (up to about 103 years) unless
exchange rates are artificially increased by human
activity such as limestone mining, oil, gas and coal
production. It is the carbon released by human activities
that has produced increased atmospheric
concentrations of CO2 to levels unprecedented for at
least 420000 years and possibly for the past tens of
millions of years (IPCC 2001).
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Figure 1. Diagram of the global carbon cycle showing
sizes of carbon reservoirs (units are Gt (gigatonnes): 1 Gt
= 1015 grams) and exchange rates (‘fluxes’) between
reservoirs (units are gigatonnes per year) in the terrestrial
(green) and the oceanic (dark blue) parts of the Earth
system. Also shown are ‘residence times’ (in years) of
carbon in each reservoir: however, some mixing between
the deep oceans and marine sediments does occur on
shorter timescales. Carbon exchanges readily between
the atmosphere, the surface oceans and terrestrial
biosphere. However, the residence time of carbon in the
atmosphere, oceans and biosphere combined, relative to
exchange with the solid Earth, is about 100000 years.
(Reprinted and redrawn from Holmen (2000) with
permission from Elsevier.)Carbon reservoirs and fluxes 

From the Royal Society report on Ocean Acidification, 2005
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Amounts to an influx of 
about 2.4 gt C per yearMean annual air-sea flux of CO2

Red: out of the ocean
Blue: into the ocean

Takahashi et al., 2009

Fa−s = k ∆pCO2

Piston velocity k
k  = f (wind speed, solubility)

k  vs.
wind speed

zone and especially in the zone north of 141N (Fig. 12C). The high
wind speeds induce not only intense upwelling in the western
Arabian Sea, but also cause high rates of sea–air gas exchange. The
southern temperate Indian Ocean also has higher wind speeds
than the southern Pacific and Atlantic, and hence higher Tr values
ranging between 0.05 in summer and 0.08 in winter. The mean
monthly values (area weighted) for the global ocean are nearly
constant around 0.05 g-Cmonth!1m!2matm!1 (Fig. 12D).

6.3. Global distribution of the net sea–air CO2 flux

The climatological mean sea–air CO2 flux in each box area for
each month is computed by multiplying monthly mean values for
Tr (Eq. (8)) and DpCO2 (Eq. (4)) in each box. Since no significant
correlation of individual DpCO2 values with 6-h mean wind speed
data is found in a single month, the product of monthly mean
values is considered as a valid approximation for the CO2 flux.
Over the polar regions, where sea-ice fields form seasonally, the
following assumptions are made for computing the sea–air CO2

flux. When the ice cover is less than 10%, a box area is assumed to
be all water. For ice covers between 10% and 90%, the flux is
assumed to be proportional to open water area. Since ice fields
have leads and polynyas due to dynamic motions of sea ice as
evidenced by ‘‘sea smoke’’, we accept the estimates by Saunders
and Ackley (personal communication) that 10% of fields is open
water at any given time even in areas where satellite observations
indicate 100% ice cover. The ice cover values used in this study are
based on the NCEP/DOE 2 Reanalysis data (2005) (provided by the
NOAA/OAR/ESRL PSD). The original data given in a Gaussian grid
for 1970–2005 are re-gridded to our 41"51 grid, and the ice cover
values in each pixel are averaged for each month (30.5 days).

6.3.1. Mean annual distribution
Fig. 13 shows the climatological mean annual sea–air CO2 flux

(g-Cm!2 y!1) for the reference year 2000, and Fig. 14 shows 41
zonal aggregates for the flux in the major ocean basins and the
global oceans. The annual fluxes in six climatic zones in each
ocean basin are summarized in Table 6. The equatorial Pacific is
the most prominent source area for atmospheric CO2 with a
seasonally persistent sea-to-air flux of 0.48 Pg-C y!1. Together
with the tropical Atlantic and Indian Oceans, the global tropical
oceans emit 0.69 Pg-C y!1 to the atmosphere. A belt of CO2 sink
zone is located in 20–501 latitudes in the both hemispheres
(Fig. 14). This is attributed primarily to strong winds between 401
and 501S, and the low pCO2 values produced along the subtropical
convergence zone, where the cooled subtropical gyre waters
with low pCO2 meet the subpolar waters with biologically-
lowered pCO2. Together, the mid-high latitude northern
(22–501N) and southern (22–501S) oceans constitute, respectively
a sink of !0.70 and !1.05 Pg-C y!1. A sink area (!0.27 Pg-C y!1) is
seen also in the North Atlantic north of 501N, including the Nordic
Seas and portion of the Arctic. This is attributed to strong
phytoplankton blooms in spring and strong cooling in winter.
The annual CO2 flux over the Southern Ocean seasonal ice
zone is small due to the ice cover that reduces sea–air gas
transfer in winter and by the cancellation of the seasonal source
and sink fluxes.

The mean annual sea–air CO2 flux values for the four major
ocean basins are compared in Table 6. While the Atlantic has only
23% of the global ocean area, it takes up 41% of the annual global
ocean flux of !1.42 Pg-C y!1. On the other hand, while the Pacific
has the largest area (47%), twice as large as the Atlantic, it takes up
only 33% of the global flux. This is due to the large CO2 source

ARTICLE IN PRESS

Fig. 13. Climatological mean annual sea–air CO2 flux (g-Cm!2 yr!1) for the reference year 2000 (non-El Niño conditions). The map is based on 3.0 million surface water
pCO2 measurements obtained since 1970. Wind speed data from the 1979–2005 NCEP-DOE AMIP-II Reanalysis (R-2) and the gas transfer coefficient with a scaling factor of
0.26 (Eq. (8)) are used. This yields a net global air-to-sea flux of 1.42 Pg-Cy!1.

T. Takahashi et al. / Deep-Sea Research II 56 (2009) 554–577 569
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Marine Biological Pump 
upwelling of nutrients - production of 

particulate carbon - ingestion - sinking of 
organic matter - mixing and advection

Some species of marine phytoplankton

Nutrients (nitrate, phosphate) are 
depleted from the surface sunlit layer

Mean vertical profiles of 
oceanic properties

Mean vertical profiles of oceanic properties

South to North 
Vertical Section 
 Atlantic Ocean

Dissolved Inorganic
Carbon (Total CO2)
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Marine Biological Pump 
upwelling of nutrients 

production of particulate carbon
food chain

sinking of organic matter
mixing and advection

Rates of (new) production and 
export of organic matter

 Production
depends on...

Nutrient supply
Light exposure
Growth rates 

 Export (sinking flux)
depends on...

Species, cell size, 
Composition 
(ballasting)

Detritus formation
Coagulation

Remineralization rate

Recycling 
Remineralization 
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DN/Dt = −Pgrowth(light,N, P ) + R

−Zgrowt(P,Z) − sinking − mortality

DP/Dt = +Pgrowth(light,N, P )

DZ/Dt = Zgrowth(P,Z)
−detritusformation − mortality

DD/Dt = detritusformation − R

NPZD Modeling.

Nutrient

Phyto-
plankton

Zoo-
plankton

Detritus

Pgrowth = µ(I)
(

N0

k + N

)
P

µ(I) = 1− exp(−I(z)/I0)

Zgrowth = λZP

Sinking = wsP

Mortality = mP

remineralization

remineralization

Detritusformation = αZgrowth

R = (species, size, composition)

Mortality = γZ

remineralization
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The oceans are very poorly mixed, vert. vel << hor. vel
Forced at surface, constrained by rotation and stratification 

Submesoscales?
Ro and Ri are O(1)
L ~ 1 km
D/L << 1, hydrostatic

Mesoscales
Ro << 1,  Ri >> 1
L ~ 10 - 100 km
D/L << 1, hydrostatic

Small scales
Ro >> 1,  Ri << 1
L < 100 m
D/L ~ 1, nonhydrostatic

Dissipative  3-DNon-dissipative 2-D How do energy and properties
get fluxed downscale?
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Analyze Property Variance at the Sea Surface

L0

L1 L2 L2

V(L0)

V(L0), V(L1), V(L2), .... etc.

How can we quantify spatial heterogeneity or patchiness?

V vs. L

V

log L

log V

L

V =
1

N

∑

N

C ′2, where C ′
= C − C

V ∼ Lp, where p is an index of Patchiness

small p

small p
more patchy

slope = p 
p<1 

Mahadevan and Campbell (2002)
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log V vs. log L
Slope is a measure of patchiness

Variance Analysis

Surface Chl is always more patchy than temperature. Why?  

Mahadevan & Campbell, 2002
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Model 

Nutrient-like Tracer 

= 0

above the euphotic depth 

below the euphotic depth 

τ = 2.5, 5, 10, 20, 40, 80Tracer response time scale  days

DC

Dt
= −

1

τ
C

Tracer Concentration 
C’

CH

H

w
∂C

∂z
= −

1

τ
C

W

H
CH ∼ −

1

τ
C

′

log
C ′

CH

∼ − log
τ

W/H

p ∼ log
τ

W/H

since V = C ′2 and p =
log V

log L

Patchiness 

Patchiness p ~ log τ
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Mahadevan & Archer  1998, 2000

Modeled Tracer Fields at Sea Surface
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Dynamics (large scale)

Du
Dt

+ ρ−1∇p + 2Ω× u + ∆φ = F

φ

f ≡ 2Ω sin φ
b ≡ 2Ω cos φ

2Ω

Ro =
U

ΩL

U2

L

P

ρL
ΩU g small

For U = 0.1m/s,L = 100km, Ω = 10−4/s

U2/L << ΩU

Ro =
U

ΩL
<< 1 Also, δ = D/L << 1

Du/Dt + Ro−1(px − fv) = F x

Dv/Dt + Ro−1(py − fu) = F y

∂p

∂z
= −ρg

px = ghx + rx

Hydrostatic Pressure gradient

rx =
∂

∂x

∫ h

z
ρdz

Rossby
number

Hydrostatic balance

wz = −Ro
−1(ux + vy) W ∼ Ro δ U
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Model

Hydrostatic δ → 0 wz = −Ro
−1(ux + vy)

ht + ∂x

∫ h

zb

udz + ∂y

∫ h

zb

vdz = 0Free-surface height
 ...and density  =>  p 

pz + ρg = 0

φ

f ≡ 2Ω sin φ
b ≡ 2Ω cos φ

2Ω

Well-posed with open boundaries

p = Hydrostatic pressure
q = Nonhydrostatic pressure

Dtu + Ro−1(px + δqx − fv + Ro δ bw) = F x

ux + vy + Ro wz = 0

Dtw + Ro−2δ−2(ρ−1pz + g + δqz − δ bu) = F z

Dtv + Ro−1(py + δqy + fu) = F y

Mahadevan et al., 1996a,b, Mahadevan & Archer 1998

Dtw + Ro−2δ−1(qz − bu) = F z

Ro =
U

ΩL

δ =

D

L

P = p + δq

Nonhydrostatic (   does not        0) δ →

W ∼ Ro δ U
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Nonhydrostatic Model
Using incompressibility qxx + qyy + δ−2qzz = F

Discretized ... 

3-D pressure field to be determined

Mahadevan et al., 1996a,b, Mahadevan & Archer 1998
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Solved efficiently using the multigrid method and line by line (block) relaxation.

(qi+1 − 2qi + qi−1) + (qj+1 − 2qj + qj−1) + δ−2(qk+1 − 2qk + qk−1) = F
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YZ

X

U

ζ/f = O(1), Ro = U/fL = O(1)

since (Tandon & Garrett, 1994) by ∼ Nf

L = byH/f2
= NH/f

−by

H

Ri = N2H2/U2 = Ro−1/2 = O(1)Bulk

W ∼ Ro δ U = δ U

δ = H/L = f/N

Vertical
velocity

where

N
2

Review on submesoscale processes: 
Thomas, Tandon, Mahadevan, 2008

Submesoscale Processes

Submesoscale motion can arise from:
 Frontogenesis
 Surface forcing 
 Instabilities, .....    

Mahadevan & Tandon, 2006
Mahadevan, 2006

Fronts - Lateral gradients in density
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Periodic Channel
Initial Conditions

LIGHT

DENSE

100 km

200 km
Surface View

Sectional View

Fig. 2. (a) Sequential figures of the surface density showing the evolution of the mixed 
layer instability over 45 days. (b) Hofmuller plot of the across front surface density (c) 
Hofmuller plot showing the evolution of the horizontally averaged buoyancy frequency 
over time. The buoyancy frequency is multiplied by 10^5 and is in s^{-1}. 

DAYS 15-30

Numerical Modeling
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Fronto-
genesis

....
intensified
by wind

Submesoscale processes:  Large, O(1) Ro, ζ+> ζ-, small O(1) Ri, large lateral strainrate,  large w (~100 m/d) in narrow regions

24 km

20 km

90 km

45 km

Ro is O(1) Strainrate /f is O(1)w ~ 100 m/day

NO WIND

WITH DOWN-
FRONT WINDS w ~ 100 m/day Ro is O(1)Strainrate is O(1)

Ageostrophic 
secondary circulation
vertical section a-b  

-4 
mm/s  

3
b

a

Mahadevan and Tandon,2006
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Section B-A

balanced dynamics, and that which may be ascribed to a loss of balance. This decomposition
of the fields into balanced and unbalanced components is done by using the solution of
the quasigeostrophic (QG) omega equation [Hoskins et al. (1978)] as a representation of
balanced dynamics. We find the geostrophic velocity ug, using the hydrography from the
model and numerically solve the three-dimensional, elliptic QG omega equation [Rudnick
(1996); Shearman et al. (1999)],

∇2(N2wΩ)− f2
0
∂2wΩ

∂z2
= ∇ · Q, where Q = 2

g

ρ0
(
∂ug

∂x
·∇ρ,

∂ug

∂y
·∇ρ), (2)

to diagnose the balanced component of the vertical velocity wΩ. The boundary conditions
are taken to be wΩ = 0 at the boundaries, with an appropriate level of no motion chosen
for the lower boundary. The resulting wΩ is compared to the vertical velocity w from the
model. Large differences are seen between wΩ and w in the near-surface (Fig. 4(b-d)), but wΩ

resembles w much better at a depth of 69 m (Fig. 4(e-h)). Hence the QG omega equation is
able to explain the mesoscale vertical motion at depth (50–100m), but not the submesoscale
motions closer to the surface (0–50m). The lack of correspondence between wΩ and w in the
near-surface suggests that unbalanced dynamics and ageostrophic anticyclonic instabilities
may have a role in the submesoscale up- and down-welling observed in the model.

Since the QG omega equation is based on the lowest order QG approximation and does
not allow variations in stratification, one may ascribe its failure in the near-surface layer to
the lack of additional advective terms and restrictions on stratification that are relaxed in
the semigeostrophic (SG) form of the omega equation. In order to attempt a higher order
decomposition of the field, we considered two approaches to solving the SG omega equa-
tion. The first, described by Pinot et al. (1996) following [Hoskins et al. (1978)], requires
interpolating the model variables into a geostrophic coordinate system. For our highly non-
linear simulations, a non-monotonic mapping between the model variables and geostrophic
coordinates arises in regions of submesoscale activity. This prevents the interpolation onto
geostrophic coordinates, unless the submesoscale features are smoothed out. The second
approach suggested by Viúdez & Dritschel (2004), solves SG equations directly but the
equation requires a coordinate mapping via a Jacobian operator, which becomes singular in
regions where Ro→ −1 or A→ 0 (Fig. 3(d)). The separation into balanced and unbalanced
dynamics thus breaks down with these approaches in the semigeostrophic case, since our
domain includes regions where A changes sign.

4 Forced Motion: Ekman Pumping by Down-front winds

The nonlinear Ekman transport induced normal to a wind stress τ , acting at the surface,
is given by ME = τρ−1(f + ζ)−1 [Stern (1965); Niiler (1969); Thomas & Rhines (2002)].
When the Rossby number is O(1), the resulting Ekman transport differs significantly from
the traditional formulation in which ζ is neglected. The Ekman pumping velocity that
results from taking ζ into account is given (e.g. Thomas & Rhines (2002)) by

wE =
−1
ρA

∂τ

∂n
+

τ

ρA2

∂ζ

∂n
, (3)

where A = ζ +f and n is normal to τ . When a wind acts on a region where lateral buoyancy
gradients ∇b exist at the surface, the along front component of the wind stress τ , which
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ME =
−τ

ρ(f + ζ)

ζ = vx − uy

Nonlinear Ekman Effects
Thomas & Rhines, 2002; 
Niiler, 1969; Stern,1965

(Mahadevan and Tandon, 2006)

w ~ 100 m/day
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∂c

∂t
+ uH · ∇c + wcz = −

1

τ
(c − c0(z))

c0(z)
100 m

500 m

0 m

10

rhs = Consumption of nutrient
      = production of phytoplankton

An (over-simplified) model for 
nutrient and phytoplankton

nutrient

τ = 1, 2, 4, 8, 16, 32 days

c
′ = c − c0(z)

Average horizontally .... and over time

As τ ↓,

∫
c′dz ↓, w′c′ ↑

1
ze

[
w′c′

]
ze

=
1

zeτ

∫ 0

ze

c′dz
Produc.

Rate

The vertical flux of nutrient 
depends on its rate of uptake
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c
′ = c − c0(z)

w
′
c
′

c
′

1

τ

c
′

τ = 1, 2, 4, 8, 16, 32 days

Average horizontally ....
1

ze

[

w′c′
]

ze

=
1

τ

∫ h

ze

c′dz∂c

∂t
+ uH · ∇c + wcz = −

1

τ
(c − c0(z))

Sensitivity to growth / uptake time scales

As τ ↓,

∫
c′dz ↓, w′c′ ↑

1 day

32 day

32 day 1 day

1 day

32 day

but only up to a point!
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Mesoscale 
Experiment  

480 km x 960 km
 (5 km grid resol)

Surface 
Density

Submesoscale 
Experiment

  96 km x 192 km 
(1 km grid resol)

100 km

Surface 
Vorticity/f

100 km

100 km

range: -1.8 to 5range: -1.2 to 1.2
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Vertical velocity

Nutrient

140m

140m

70km

70km

Vertical velocity at 100 m  
in mm/s

range: -0.75 -- 0.5 range: -2.6 -- 1.7

100 km100 km

vertical section

Mesoscale  5 km res Submesoscale  1 km res.
100x180 km
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45m 3h 12h 2d 8d 32d

Time scale of nutrient uptake

Submesoscale : 1 km resolution Mesoscale: 5 km resolution

45m 3h 12h 2d 8d 32d

8.5m

25 m

51 m

93 m

158m

260 m

D
ep

th

w′c′

Mesoscale  5 km resSubmesoscale  1 km res.
70 5.4

Averaged horizontally over the entire domain,
but at one instant of time 

Phytoplankton have adapted to maximize productivity?!

There must be an optimum      , but it would depend on the characteristics of the flow

Vertical motion with similar time scales to that of phytoplankton have the most impact on biology. 

τ

Time scale of phytoplankton growth     optimum for submesoscale vertical nutrient fluxes!!≈
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Frontogenesis

Ageostrophic 
secondary 
circulation

b =
−gρ;

ρ0

QG:

u = ug fugz = −by

Db

Dt
= 0;

D

Dt
by = −uybx − vyby = Q2

Dgug − fva = 0; Dgb + N2w = 0

section

at 15 m
Vertical Velocity

Surface Density
(va, w) = (ψz,−ψy)

N2ψyy + f2ψzz = −Q2

N2wy − f2vaz = Q2
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with D/Dt = ∂/∂t+(ug +uag) ·∇, and are valid if D2u/Dt2 " f 2u and D2v/Dt2 " f 2v,

i.e. if the Lagrangian timescale of variability of the flow is much longer than an inertial

period [Hoskins , 1975].

3.1.1. Two-dimensional vertical circulation

Consider a front in the y-z plane, i.e. by #= 0 and bx = 0, where the along-front velocity

u is purely geostrophic, i.e., u = ug, and in thermal wind balance; fugz = −by. The

two dimensional ageostrophic circulation can be described by an across-front overturning

stream function ψ, where (vag, w) = (ψz,−ψy). As first derived by Eliassen [1948]; Sawyer

[1956], a single equation for ψ can be constructed by combining the y derivative of the

buoyancy equation (3), with the z derivative of the zonal component of (1), yielding

F 2
2

∂2ψ

∂z2
+ 2S2

2

∂2ψ

∂z∂y
+ N2∂2ψ

∂y2
= −2Qg

2, (5)

where N2 = bz, S2
2 = −by = fugz, F 2

2 = f(f − ugy), and Qg
2 is the y-component of the

Q-vector

Qg = (Qg
1, Q

g
2) =

(
−∂ug

∂x
·∇b,−∂ug

∂y
·∇b

)
(6)

introduced by Hoskins et al. [1978]. A geostrophic flow with a nonzero Q-vector will

modify the magnitude of the horizontal buoyancy gradient following the equation

D

Dt
|∇hb|2 = Qg ·∇hb (7)

and will consequently disrupt the thermal wind balance of the flow. To restore geostrophy

an ageostrophic secondary circulation is required, and its solution is governed by (5).

Although (5) is formally valid only for two-dimensional ageostrophic motions, it is useful

for diagnosing the importance of various mechanisms in generating an ASC and large

vertical velocities in the presence of lateral buoyancy gradients. A three-dimensional
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version of this equation, with diabatic and frictional effects, is thus presented and discussed

in Section 3.1.3.

The solution to (5) can be found using the method of Green’s functions. The Green’s

function for ψ satisfies the following equation

F 2
2

∂2G

∂z2
+ 2S2

2

∂2G

∂z∂y
+ N2∂2G

∂y2
= δ(y − Y , z − Z), (8)

which, for any Q−vector distribution yields the ageostrophic circulation: ψ = −2
∫∫

G(y−

Y , z − Z)Qg
2(Y ,Z)dYdZ + ψh, where ψh is a homogeneous solution to (16) that ensures

that ψ satisfies the boundary conditions. The solution to (8) for constant coefficients is

G =
1

4π
√

fq2D
log |Arg|; Arg =

[(y − Y)− (z − Z)S2
2/F

2
2 ]2

L2
SG

+
(z − Z)2

H2
(9)

where

LSG = H

√
fq2D

F 2
2

(10)

is the semi-geostrophic Rossby radius of deformation, H is a characteristic vertical length-

scale of the flow, and

q2D =
1

f
(F 2

2 N2 − S4
2) = fN2

[
1 + Ro2D −

1

Ri2D

]
(11)

is the PV of the geostrophic flow if it were purely zonal and two-dimensional, i.e.

Ro2D = −ugy/f and Ri2D = N2/(ugz)2 [Eliassen, 1951; Hakim and Keyser , 2001] From

the dependence of (9) on the PV, it can be seen that a solution does not exist for

fq2D < 0, indicating that the conditions under which a unique solution for (5) can

be found is fq2D > 0. G is plotted in figure 1 for a buoyancy field that decreases in

the y−direction (S2
2 > 0). Streamlines take the shape of tilted ellipses oriented at an

angle θ = 0.5 tan−1[2S2
2/(N

2 − F 2
2 )]. For typical conditions, F 2

2 # |S2
2 | # N2, the el-

lipses are oriented parallel to isopycnals, tan θ ≈ S2
2/N

2, and the secondary circulations
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Potential vorticity =

Semi-geostrophic: higher order in Ro

<  generally positive, but when it 
changes sign, this is not solvable
Loss of balance -- leads to vertical 
motion and mixing.

A simpler model for circulation in the vertical plane

Ro

Vertical velocity along 
Section A-B

A

B

A closer look at a single feature

Frontogenesis

b =
−gρ;

ρ0
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Distribution of 
phytoplankton 

responds to  
vertical or 

lateral 
advection? 
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