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Earth’s climate system displays variability on many scales
space:10~°m-10" m
time: seconds 10° years (and beyond)

Loosely, slower variability called “climate” and fasteilea “weather”
Dynamical nonlinearitiess> coupling across space/time scales

= modelling climate, weather must be parameterised, notegho
Classical deterministic parameterisations assume veyg kcale separation

Following Mitchell (1966), Hasselmann (1976) suggestthastic
parameterisations more appropriate when separation finite

This talk will consider:
stochastic averagingas a tool for obtaining stochastic climate models
from coupled weather/climate system

. @ two examples: coupled atmosphere/ocean boundary layers,
UVIC extratropical atmospheric low-frequency variability
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A statistical mechanical perspective

Consider a box at temperatufecontainingN ideal gas molecules

Kinetic energy of individual molecules randomly distribdtwith
Maxwell-Boltzmann distributiom (&)

As N — oo mean energy approaches sharp value

N
1 I
E:N;EZ- NS oo E:/é’p(é’)dé’

For N large (but finite) £ is random

1
E=FE+ —
VN

such that (by central limit theoreng)is Gaussian
Very large scale separationr deterministic dynamics

Smaller (but still large) separatice stochastic corrections needed

I UVic
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Observation: spectra of sea surface temperature (SS By are
generically red
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Hasselmann’s ansatz: a stochastic climate model

Simple model of Frankignoul & Hasselmann (1977) assumed:

local dynamics of small perturbatiofi linearised around
climatological mean state

“fast” atmospheric fluxes represented as white noise

= simple Ornstein-Uhlenbeck process

dT"’ 1 :
= T AW
dt T T
with spectrum 2,2
E{T' ()%} = -
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Hasselmann’s ansatz: a stochastic climate model

Simple model of Frankignoul & Hasselmann (1977) assumed:

local dynamics of small perturbatiofi linearised around
climatological mean state

“fast” atmospheric fluxes represented as white noise

= simple Ornstein-Uhlenbeck process

dT"’ 1 :
= T AW
dt T T
with spectrum 2,2
E{T' ()%} = -

27(1 4+ w?7?)
Linear stochastic model

= simple null hypothesis for observed variability
We’ll be coming back to this again later on ....

@ UVic
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Coupled fast-slow systems

W Starting point for stochastic averaging is assumptiongtete
variablez can be written

Z = (X7Y)
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variablez can be written

Z = (X7Y)

x ~ “slowvariable” (climate)
where such that

y ~ ‘“fastvariable” (weather)

%X = f(x,y)
d
oy = 9(x,y)
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Coupled fast-slow systems

Starting point for stochastic averaging is assumptiondtete
variablez can be written

Z = (X7Y)

x ~ “slowvariable” (climate)
where such that

y ~ ‘“fastvariable” (weather)

d
%X — f(X,}’)
d
-y = 9(xy)
where . f(X,y)
9(x,y)

L UVIC 1S “small”
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A simple example

W As a simple example of a coupled fast-slow system consider
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As a simple example of a coupled fast-slow system consider

d

priiie r—a° + (X +2)y
d 1 |

Sy = gy W
at” ra? T 7

The “weather” procesg is Gaussian with stationary autocovariance

| 5]

Cpls) = E{y<t>y<t+s>}=7exp(——)
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—
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A simple example

As a simple example of a coupled fast-slow system consider

d

priiie r—a° + (X +2)y
d 1 1 ..

Sy = eyt —W
at” ra? T 7

The “weather” procesg is Gaussian with stationary autocovariance

| 5]

Cpls) = E{y<t>y<t+s>}=7exp(——)

ke

—

ast — 0 7'3725(8)

Intuition suggests that as— 0

d .
Em:x—w3+\/?(2—l—w)|x|ow
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Averaging approximation (A)

m As Tt — 0, over finite times we have(t) ~ xX(t)
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m As T — 0, over finite times we have(t) ~ X(t)

with d

Ei = f(X)
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m As T — 0, over finite times we have(t) ~ X(t)
with d

where

(®) = / F&y)dua(y) = lim = [ f( y(t) dt
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with d

where
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Averaging approximation (A)

As T — 0, over finite times we have(t) ~ x(t)

with d

where

averages(x,y) over weather for a fixed climate state
To leading order, “climate” follows deterministic averagdynamics

For simple model

d
Em_Ey|m{$—$3—|—$y—|—Ey}:f—f3

@ UVic
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Averaging approximation (A)

As T — 0, over finite times we have(t) ~ x(t)

with d _
=% = f(%)

where

f(x Z/f(f,Y)dum :Thféof/ f(X,y(t)

averages(x,y) over weather for a fixed climate state

To leading order, “climate” follows deterministic averagdynamics

For simple model

d
Em—Eyu{m—x?’—l—xquEy}:f—f?’

l.e. depending om(0) system settles into bottom of one of two
@ UVIic potential wellst = +1
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Analogy to Reynolds averaging

Approximation (A) analogous to Reynolds averaging in fluid
mechanics: split flow into “mean” and “turbulent” comporent

— /
uUu=u-+u
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u="u-4+u
1 T
where at) = o /_T u(t + s) ds

Full flow satisfies Navier-Stokes equations
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Analogy to Reynolds averaging

Approximation (A) analogous to Reynolds averaging in fluid
mechanics: split flow into “mean” and “turbulent” comporent

u="u-4+u
1 T
where at) = o /_T u(t + s) ds

Full flow satisfies Navier-Stokes equations
Oru + u - Vu = force

= mean flow satisfies “eddy averaged” dynamics

oyu +w - Vu = force— v - V!

Note: averaging is projection operator only if scale sefpama
i UVic betweert; andv/
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Central limit theorem approximation (L)
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modelled as a random process
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where( is the multivariate Ornstein-Uhlenbeck process
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Central limit theorem approximation (L)

Forr £ 0 averaged and full trajectories differ; this difference ban
modelled as a random process

Basic result: forr small z(t) ~ T(t) + ¢

where( is the multivariate Ornstein-Uhlenbeck process
d _ :
ZC=DJ(x) ¢ +o(x)W

Diffusion matrixo(x) defined by lag correlation integrals

ﬁmzfmawwmwwwmkmwnw

— OO

where f'Ixy®)] = flx,y@#)] - flx]
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Central limit theorem approximation (L)

Forr £ 0 averaged and full trajectories differ; this difference ban
modelled as a random process

Basic result: forr small z(t) ~ T(t) + ¢

where( is the multivariate Ornstein-Uhlenbeck process
d _ :
ZC=DJ(x) ¢ +o(x)W

Diffusion matrixo(x) defined by lag correlation integrals

) = [ T By Pyt ) o y (0]} ds
where fixy@)] = flx,y@)] — flx]

Note that stdl{) ~ /7 so corrections vanish in strict— 0 limit

I UVic
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Central limit theorem approximation (L)

W Averaging solutiorx(t) augmented by Gaussian “corrections” such that
x(t) itself not affected
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x(t) itself not affected

= feedback of weather on climate only through averaging; nexatan’t drive
climate between metastable states

(L) approximation still has been very successful in manytexis (e.g.
Linear Inverse Modelling)

For the simple example model:
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Central limit theorem approximation (L)

Averaging solutiorx(¢) augmented by Gaussian “corrections” such that
x(t) itself not affected

= feedback of weather on climate only through averaging; nexatan’t drive
climate between metastable states

(L) approximation still has been very successful in manytexis (e.g.
Linear Inverse Modelling)

For the simple example model:

flzy)=(x—2°+ay+Sy) — (z—2°) = (z + D)y

SO

w) =@+ [ T By (y(t + 9)y()} ds = (@ + )%
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Central limit theorem approximation (L)

Averaging solutiorx(¢) augmented by Gaussian “corrections” such that
x(t) itself not affected

= feedback of weather on climate only through averaging; nexatan’t drive
climate between metastable states

(L) approximation still has been very successful in manytexis (e.g.
Linear Inverse Modelling)

For the simple example model:

flzy)=(x—2°+ay+Sy) — (z—2°) = (z + D)y

0 52(2) = (z + ) /_ h By {y(t+ s)y(t)} ds = (z + %)%

= x(t) — 1+ ¢ such that

d _ 2
0= 20+ (1 +%)°W
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Hasselmann approximation (N)

W More complete approximation involves full two-way intetiaa between
weather and climate
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More complete approximation involves full two-way intetiaa between
weather and climate

x(t) solution of stochastic differential equation (SDE)

d _ .
X = f(x)+o(x)oW
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transitions between metastable states
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More complete approximation involves full two-way intetiaa between
weather and climate

x(t) solution of stochastic differential equation (SDE)

d _ :
—x = f(x)+o(x)o W

dt

Most accurate of all approximations on long timescales;czgoture

transitions between metastable states
Noise-induced drifs- further potential feedback of weather on climate
Simple model: d
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x(t) solution of stochastic differential equation (SDE)
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X = f(x)+o(x)oW
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nonlinear coupling of andy in slow dynamics
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Hasselmann approximation (N)

More complete approximation involves full two-way intetiaa between
weather and climate

x(t) solution of stochastic differential equation (SDE)

d _ .
X = f(x)+o(x)oW

Most accurate of all approximations on long timescales;czgoture
transitions between metastable states

Noise-induced drifs- further potential feedback of weather on climate

Simple model: d

%x:x—x?’—k(z—kx)\x\ow

Multiplicative noise introduced through:
nonlinear coupling of andy in slow dynamics
dependence of stationary distributiomobn x
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When does this work?

®m For the (A) approximation to hold all that is required is a¢snale
separation
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For the (A) approximation to hold all that is required is a¢gnale
separation

For (L) and (N) further require fast processstsongly mixing

Informally, what is required is that the autocorrelationdtion ofy
decay sufficiently rapidly with lag for large timescale sepi@mns the
delta-correlated white noise approximation is reasonable
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When does this work?

For the (A) approximation to hold all that is required is a¢gnale
separation

For (L) and (N) further require fast processstsongly mixing

Informally, what is required is that the autocorrelationdtion ofy
decay sufficiently rapidly with lag for large timescale sepi@mns the
delta-correlated white noise approximation is reasonable

Crucially : none of this assumes that the fast process is stochastic.
Effective SDEs (L) and (N) arise in limit — 0 as approximation to
fastdeterministic or stochastidynamics
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Relation to “MTV Theory"

® Have assumed that influence of weather on climate is boursled-a0
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“MTV" theory considers averaging assuming that weatheuearfte
strengthensin this limit
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Relation to “MTV Theory"

Have assumed that influence of weather on climate is boursled-a0

“MTV" theory considers averaging assuming that weatheuearfte
strengthensin this limit

An example:
dx n a
R f— —T [
dt VT Y
dy 1 1 b

= —z—-y+—=W

dt VT T VT
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Relation to “MTV Theory"

Have assumed that influence of weather on climate is boursled-a0

“MTV" theory considers averaging assuming that weatheuearfte
strengthensin this limit

An example:
dzx n a
R f— —T [
dt VT Y
dy 1 1 b

= —z—-y+—=W

dt VT T VT
By () = V7o . std, —17)2
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Relation to “MTV Theory"

Have assumed that influence of weather on climate is boursled-a0

“MTV" theory considers averaging assuming that weatheuearfte
strengthensin this limit

An example:
dx n a
—_— f— _x —_—
dt N
dy 1 1 b _.
— : — — —
i~ A

By {y} = V7r , std), =17/2

Stochastic terms remain in the strict— 0 limit

d .
d_f = —(1 —a)x + abW
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Relation to “MTV Theory"

Have assumed that influence of weather on climate is boursled-a0

“MTV" theory considers averaging assuming that weatheuearfte
strengthensin this limit

An example:
dx n a
—_— f— _x —_—
dt N
dy 1 1 b _.
— : — — —
i~ A

By {y} = V7r , std), =17/2

Stochastic terms remain in the strict— 0 limit

d .
d_:f = —(1 —a)x + abW

Present analysis will not make MTV ansatz of increasing ivaanfluence
UViC ast decreases; rather thana = 0 theory", itis a “smallr theory"
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Case study 1: Coupled atmosphere-ocean boundary layers

Atmosphere and ocean interact through (generally turbuberundary
layers, exchanging mass, momentum, and energy
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Case study 1: Coupled atmosphere-ocean boundary layers

Atmosphere and ocean interact through (generally turbuberundary
layers, exchanging mass, momentum, and energy

Idealised coupled model of atmospheric winds and air/saadeatures:

d Cd(w) We "

= — Hu — — U

gt = W = g e = st o

d B cq(w) We :

it W 1) i, Tyl o
d A, . .
—Ta = E(TO — Ta)w — ﬁ@(w — ,LLw) — —Ta —+ 211W3 —+ 212W4
dt fYQ, ’Ya f}/a/
d A, . .
—TO = E(Ta — TO)’LU —+ ﬁ@(’w — ,uw) — —TO + 221W3 —+ 222W4

dt Yo Yo Yo
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Case study 1: Coupled atmosphere-ocean boundary layers

54°N =

48°N -

42°N 4 L B
36°N 1 i
30°N Y r r Y Y

165°E 180°wW 165°W 150°wW 135°W 120°wW

__ UVi C Ocean station P
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Case study 1: Coupled atmosphere-ocean boundary layers

Atmosphere and ocean interact through (generally turbubeundary
layers, exchanging mass, momentum, and energy

|dealised coupled model of atmospheric winds and air/saadeatures:

d cqa(w) We :

= — Hu — — U

gt = W = g e = st o

d cqa(w) We :

i’ W 1) w1yl o
d Ay . :
—Ta = E(TO — Ta)w — ﬁ@(w — ,uw) — —Ta + 211W3 + 212W4
dt Ya Ya Ya

d Ao . :
—TO = E(Ta — To)w + ﬁﬁ(w — ,LLw) — —TO —+ 221W3 + 222W4
dt /YO ")/o /YO

Atmospheric boundary layer thickness determined by sarfa@tification

W(Ta,T,) = max [hmin, h(1 — Ty — T,))]
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Case study 1: Coupled atmosphere-ocean boundary layers

1100 — . . .
1000}
900}
__ 800t
E
i
700¢

600

5001 7

400 0
Ta_To (K)

Boundary layer height and surface stability

Modellina Interactions Between Weather and Climate — n321/



Case study 1: Coupled atmosphere-ocean boundary layers

‘ ‘ 2
Ta (obs)
1t ___Ta(sim) |
T_ (obs) 1!
c
e
©
@
o)
(@]
Obs
& Sim
-2 T OK 2 4
()
0.1
Obs
= = =Sim
c
0.6}
% . 0.06¢1
o 04\ %
s 0.04f
S 0.2}
oo TT======o=c ! 0.02f
-0.2 : : 0 ‘ ‘
0 2 4 6 0 10 20 30
lag (days) w (m/s)

Observed and simulated statistics (Ocean Station P)
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Case study 1: Coupled atmosphere-ocean boundary layers

W Observed timescale separations:

w07

TTa
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Case study 1: Coupled atmosphere-ocean boundary layers

W Observed timescale separations:
Tw

— ~ 0.7

TTa

m Takex =T = (1,,T,),y = (u,v) with
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Case study 1: Coupled atmosphere-ocean boundary layers

Observed timescale separations:

Tw

~ 0.7

TTa
Takex =T = (1,,7,),y = (u,v) with
Averaging model (A)

- T = f(T)+XW

f(K [ s) k A (K [ s)

x 10~
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Case study 1: Coupled atmosphere-ocean boundary layers

W Analytic expression fos (1, T,)

!

Vet \ -1 -

Yo

o(Ty,T,) =

w(Ta o TO)
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Case study 1: Coupled atmosphere-ocean boundary layers

W Analytic expression fos (1, T,)

Yo
o Yo

1
V3YE+yi | -1 2

Yo

o (T, T)) = (T, — T))

where

(T, —T,) = (Ty —TO—|—¢9)\//OO E{w'(t+ s)w'(t)} ds
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Case study 1: Coupled atmosphere-ocean boundary layers

Analytic expression fos (1, T,)

N
U(Taa To) — Te w(Ta To)
Vet \ -1 2

where

(T, —T,) = (Ty —TO—|—¢9)\//OO E{w'(t+ s)w'(t)} ds
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Case study 1: Coupled atmosphere-ocean boundary layers

1 : : 2
Ta (reduced)
- - = = T_(full) 11 /’_\
o T, (reduced) — ya —~ ,
T T_ (full X 0 . ?‘—;\\/@
Q o /(((»»//%//
= - \——
S -1 Reduced |
Full
. . . - -2 - - '
0 20 40 60 80 -4 -2 0 2 4
lag (days) T (0 =07
1 : : 2
T, (reduced)
- - = =T, (full 1!
9 To (reduced) —
T 05 T_ (full | X
()] o Of
g —
O == = -1
01 2
0 20 40 60 80 -4 -2 0 2 4
lag (days) Ta (K) 7 =0.35
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Case study 1: Coupled atmosphere-ocean boundary layers

Sura and Newman (2008) fit observations at OSP to linear
multiplicative SDE

%T:AT—FB(T)OW
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Case study 1: Coupled atmosphere-ocean boundary layers

Sura and Newman (2008) fit observations at OSP to linear
multiplicative SDE

%T:AT+B(T)0W
Form of this SDE justified through simple substitution
W — MUy + oW

In full coupled dynamics

@ UVic
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Case study 1: Coupled atmosphere-ocean boundary layers

Sura and Newman (2008) fit observations at OSP to linear
multiplicative SDE

%T:AT—FB(T)OW

Form of this SDE justified through simple substitution
W — MUy + oW

In full coupled dynamics

Form of SDE did not account for feedback of stratificationion
physical origin of parameters in inverse model somewhé#tiht
than had been assumed

@ UVic
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Case study 2: extratropical atmospheric LFV

W Variability of extratropical atmosphere on timescales-0f0 days +
descrbed as “low-frequency variability” (LFV)
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Variability of extratropical atmosphere on timescales-0f0 days +
descrbed as “low-frequency variability” (LFV)

Associated with hemispheric to global spatial scales
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Case study 2: extratropical atmospheric LFV

W Variability of extratropical atmosphere on timescales-0f0 days +
descrbed as “low-frequency variability” (LFV)

W Associated with hemispheric to global spatial scales

Northern Annular Mode (NAM)

180°W 1B0-W
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Case study 2: extratropical atmospheric LFV

W Variability of extratropical atmosphere on timescales-0f0 days +
descrbed as “low-frequency variability” (LFV)

W Associated with hemispheric to global spatial scales

Northern Annular Mode (NAM) & Basic structures characterised

180°W 1B0"W

statistically; dynamical questions
remain open
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Case study 2: extratropical atmospheric LFV

W Variability of extratropical atmosphere on timescales-0f0 days +
descrbed as “low-frequency variability” (LFV)

W Associated with hemispheric to global spatial scales

Northern Annular Mode (NAM) & Basic structures characterised

180°W 1B0"W

statistically; dynamical questions

5 remain open

W om Empirical stochastic models have
. been useful for studying LFV
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Case study 2: extratropical atmospheric LFV

W Variability of extratropical atmosphere on timescales-0f0 days +
descrbed as “low-frequency variability” (LFV)

W Associated with hemispheric to global spatial scales

Northern Annular Mode (NAM) & Basic structures characterised

oW BOW

statistically; dynamical questions
remain open

. ._4_—:%%‘%
“j‘) ® Empirical stochastic models have

e . been useful for studying LFV

A . J # W Stochastic reduction techniques

natural tool for investigating

) dynamics
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Case study 2: extratropical atmospheric LFV

Position of the jet maximum
| R S . . .
@
g 50
H, Atmosphere § asp 1 T=77d
) a0l
( a) 0 S{I]ﬂ 1 OIUU 1 5I00 EUIOO 25500 3000
F a
[ T=C; 1, . %)
T &= S5T T=7.1d
Land Ocean Land . . ,
(b) i} 500 1000 1500 2000 2500 3000
X X X X
wil Y0480 km ~ * : 8
g T=6.7d
% 5120 km , . , ;
aN (C) 0 500 1000 1500 2000 2500 3000
¥ .
Q
a B
45°N &
S| A N ———— |V ———— S ———— | E—]] {p— |
6400km | Land Ocean Land 5600 km
(SST) (d)
e
Ya,S %
X aW X w X E X aE
(e) 0 S(IJO 1 OIOO 1 SPOO 21';00 ESIOO 3000
Time (days)

Kravtsov et al. JAS 2005
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Case study 2: extratropical atmospheric LFV

Autocorrelation timescale and % explained variance vs. EOF;

k'=6.7 days
50 T T T T T T T T T | T
wave—4
401 a.c. timescale (days) |
* % explained variance
301 < stationary mode |
201 =
10} I -
L [ ]
0 [ | ¢ ¢ * i . . L) . . »
1 2 3 4 5 5] 7 9 10 11 12 13 14 15
EOF

W Using PCA decomposition, identify 2 slow modes: propagatin
wavenumber 4, stationary zonal
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Case study 2: extratropical atmospheric LFV

Autocorrelation timescale and % explained variance vs. EOF;

k'=6.7 days
50 T T T T T T T T T | T
wave—4
401 a.c. timescale (days) |
® % explained variance
30F < stationary mode |
L ]
201 =
10} I R
L [ ]
b | B o e ots B B O m B S .
1 2 3 4 5 5] 7 B 9 10 11 12 13 14 15
EOF

Using PCA decomposition, identify 2 slow modes: propagatin
wavenumber 4, stationary zonal

Kravtsov et al. (2005) concluded that regime behaviourlteddrom
nonlinear interaction of these modes

I UVic
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Case study 2: extratropical atmospheric LFV

Autocorrelation timescale and % explained variance vs. EOF;

k'=6.7 days
50 T T T T T T T T T | T
wave—4
401 a.c. timescale (days) |
® % explained variance
30F < stationary mode |
L ]
201 =
10} I R
L [ ]
0 * * * ? L L L) . . .

8 9 10 11 12 13 14 15
EOF

Using PCA decomposition, identify 2 slow modes: propagatin

wavenumber 4, stationary zonal

Kravtsov et al. (2005) concluded that regime behaviourlteddrom
nonlinear interaction of these modes

Consider reduction to 3-variable, 1-variable (statiomande) models

I UVic
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Case study 2: extratropical atmospheric LFV

Stationary mode statistics of 3—variable (N) & (W); k '=6.7 days Wave-4 statistics of 3—variable (N) & (W); K '=6.7 days
PDF PDF

. | nreduced model
(M) model
 \\) model

-500 0 500 -500 0 500

Principal component Principal component

ACF ACF

50 100 150 200 250 0 50 100 150 200 250
Time—lag (days) Time-lag (days)
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Case study 2: extratropical atmospheric LFV

Statistics of 1-variable (N) & (W); k™ '=6.7 days
PDF

. | nreduced model
B E B (N) model
| B (W) model

500

Principal Component

ACF

50 100 150 200
Time—lag (days)

250

UVic

Drift potential of 1-variable (A) model
k=67 days

~——drift potential of (A)
time series of unreduced model stationary mode

—-800 —-600 -400 -200 0 200

Stationary mode principal component

400 600

800
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Case study 2: extratropical atmospheric LFV

Statistics of 1-variable (N) & (W); k™ '=6.7 days
PDF

. | nreduced model
B E B (N) model
|® B (W) model

—500 0 500
Principal Component

ACF

50 100 150 200 250
Time—lag (days)

I UVic

Drift potential of 1-variable (A) model
k=67 days

~——drift potential of (A)
time series of unreduced model stationary mode

—-600 -400 -200 0 200 400

Stationary mode principal component

W Stationary mode "potential”
shows prominent shoulder
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Case study 2: extratropical atmospheric LFV

Statistics of 1-variable (N) & (W); k™ '=6.7 days
PDF

. | nreduced model
B E B (N) model
|® B (W) model

—500 0 500
Principal Component

ACF

50 100 150 200 250
Time—lag (days)

Drift potential of 1-variable (A) model
k=67 days

~——drift potential of (A)
time series of unreduced model stationary mode

! ! | | |
—-800 —-600 -400 -200 0 200 400 600 800

Stationary mode principal component

W Stationary mode "potential”
shows prominent shoulder

™ In this model, appears that
multiple regimes produced by
nonlinearity in effective
dynamics of stationary mode
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Case study 2: extratropical atmospheric LFV

Statistics of 1-variable (N) & (W); k™ '=6.7 days
PDF

. | nreduced model
B E B (N) model
|® B (W) model

—500 0 500
Principal Component

ACF

50 100 150 200 250
Time—lag (days)

Drift potential of 1-variable (A) model
k=67 days

~——drift potential of (A)
time series of unreduced model stationary mode

! ! | | |
—-800 —-600 -400 -200 0 200 400 600 800

Stationary mode principal component

Stationary mode "potential”
shows prominent shoulder

In this model, appears that
multiple regimes produced by
nonlinearity in effective
dynamics of stationary mode

Non-gaussianity doesn’t require
state-dependent noise
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Case study 2: extratropical atmospheric LFV

Statistics of 1-variable MTV model; k™ '=6.7 days
PDF

| nreduced model
B ¥ § best-fit MTV

-500 0 500
Stationary mode principal component

ACF

50 100 150 E{I)O
Time-lag (days)

250 ~

Stationary mode statistics of 3—variable MTV; kK'=6.7 days

Wave—4 statistics of 3—variable MTV; K'=6.7 days

PDF PDF
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& e
L
- [
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i 0.5 | | i |
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MTV approximations with “minimal regression” tuning

UVic
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Conclusions

Stochastic reduction tools allow systematic derivatiotoof-order
climate models from coupled weather/climate systems
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Conclusions

Stochastic reduction tools allow systematic derivatiotoof-order
climate models from coupled weather/climate systems

Reduction approach is straightforward, although impletagm in
high-dimensional systems challenging

This approach provides a more general approach than e.g. MTV
theory, with

benefitof less restrictive assumptions

drawbacksof more difficult implementation, lack of closed-form
solution

Real systems do not generally have a strong scale separation
Important outstanding problem is a more systematic appraac
accounting for this

I UVic
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