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Outline

e What is Climate & why do we care

NCAR

Hierarchy of atmospheric modeling strategies

— 1D Radiative Convective models
— 3D General Circulation models (GCMs)

Conceptual Framework for General Circulation Models

Scale interaction problem

— concept of resolvable and unresolvable scales of motion

Model Validation and Model Solutions
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Question 1: How can we predict Climate (50 yrs)
if we can’t predict Weather (10 days)?

Question 2: What is Climate?

Average Weather
Record high and low temperatures
The temperature range

Distribution of possible weather
Extreme events

moOnOwx
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(1) What is Climate?

Climate change
and its manifestation
in terms of weather
(climate extremes)
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Impacts of Climate Change

Observed Change 1950-1997
Snowpack

w Mote et al 2005
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Temperature anomaly (°C)

Temperature records and estimates

- Borehole temperatures (Huang et al. 2000) - Glacier lengths (Oerlemans 2005b)
= Multiproxy (Mann and Jones 2003a) — Multiproxy (Moberg et al. 2005a)

- Multiproxy (Hegerl et al. 2006) —Tree rings (Esper et al. 2002a)
— |Instrumental record (Jones et al. 2001)
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The Earth’s climate system
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Principles of Atmospheric Modeling

e Scientific basis for atmospheric simulation

— rooted in laws of classical mechanics/thermodynamics
— developed during 18th and 19th centuries (see Thompson, 1978)

— early mathematical model described by Arrhenius (1896)
— surface energy balance model

e Two modeling approaches developed over last century
— based on energy balance requirements
— dynamical models (e.g., explicit transports)
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Conceptual Framework for Modeling

e (Can't resolve all scales, so have to represent them

e Energy Balance / Reduced Models
— Mean State of the System
— Energy Budget, conservation, Radiative transfer

e Dynamical Models
— Finite element representation of system
— Fluid Dynamics on a rotating sphere
— Basic equations of motion
— Physical Parameterizations for moving energy
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Atmospheric modeling hierarchy

Understanding has been aided by a hierarchy of approaches

Consider the flux form of thermodynamic energy equation

oT owT kwT |
CPW — --va . (VT) - Cp (ap ) -+ CpT ‘|‘ Qrad + Qconv (1)

where 7" - temperature; V - horizontal wind vector; p - pressure; w - vertical
pressure velocity; Qraqd and Qcony - net radiative and convective heating

e Simple Zero-Dimensional (Energy Balance) Climate Model

— Averaging (1) over horizontal and vertical space dimensions yields

d<T>

=<8>-<F
p—gr— =< 8> -<F>

where § is net absorbed solar radiation and F is longwave radiation
emmitted to space

For a long-term stable climate, < § > - < F>=0

\
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Atmospheric modeling hierarchy

¢ Simple One-Dimensional (Radiative-Convective} Climate Model

— Averaging (1) over horizontal space dimensions yields

0<T>

ot =< Qrad >+ < Qconv >

Cp

where a globally averaged vertical profile of T' can be determined from
~ expressions for < Qraq > and < Qeony >

e Higher-order models determined by form of averaging operators
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1D Radiative Convective Model

Manabe
& Wetherald 1967
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1D models:
Doubling CO2

TaBLE 5. Change of equilibrium temperature of the earth’s
surface corresponding to various changes of CO; content of the
atmosphere.
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F1c. 16. Vertical distributions of temperature in radiative con-
n vective equilibrium for various values of CO; content.
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Top of Atmosphere Radiation Component Fluxes

ERBE Absorbed Solar and Outgoing Longwave Fluxes
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TOTAL NET RADIATIVE FLUX (W/m*"2)

Top of Atmosphere Net Radiation Budget and
Implied Meridional Energy Transport

TOTAL NORTHWARD ENERGY TRANSPORT FROM
TOTAL ANNUAL MEAN NET RADIATION AT TOA ISCCP-FC, ERBE AND PEIXOTO & OORT
FOR ISCCP-FC & ERBE (ADJUSTED)
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Atmospheric General Circulation Models
and Climate Simulation

e Reduced models of the climate system
— apply “averaging operator” to governing equations

o Atmospheric General Circulation Models (AGCMs)
— simulate detailed “weather” fluctuations in the fluid system
— day-to-day solution details are non-deterministic (Lorenz, 1962)
— apply “averaging operator” to detailed solution sequence

— utility lies in prediction of statistical properties of the fluid system
— chronological sequence of intermediate states unimportant
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Physical processes regulating climate

Changes of
solar radiation
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Figure 3.1: Schematic illustration of the components of the coupled atmosphere-ocean-ice-land climatic system. The full arrows are
examples of external processes, and the open arrows are examples of internal processes in climatic change (from Houghton, 1984).
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Modeling the Atmospheric General Circulation

Understanding of climate & global scale dynamics

NCAR

atmospheric predictability/basic fluid dynamics
physics/dynamics of phase change

radiative transfer (aerosols, chemical constituents, etc.)
atmospheric chemistry (trace gas sources/sinks, acid rain, etc.)

interactions between the atmosphere and ocean (e.g., El Nino,
etc.)

solar physics (solar-terrestrial interactions, solar dynamics, etc.)
impacts of anthropogenic and other biological activity

J. J. Hack/A. Gettelman: June 2005



Meteorological Primitive Equations

e Applicable to wide scale of motions; > 1hour, >100km

NCAR

dV/dt+ fkxV+V¢o=F, (horizontal momentum)

dT/dt — kTw/p = Q/c,, (thermodynamic energy)
V-V +0w/0p =0, (mass continuity)
0¢/0p+RT/p=0, (hydrostatic equilibrium,)
dg/dt = S,. | (water vapor mass continuity)

Harmless looking terms F, ), and S, = “physics”
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Global Climate Model Physics

Terms F, @, and S, represent physical processes

e Equations of motion, F
— turbulent transport, generation, and dissipation of momentum

e Thermodynamic energy equation, Q
— convective-scale transport of heat
— convective-scale sources/sinks of heat (phase change)
— radiative sources/sinks of heat

e Water vapor mass continuity equation
— convective-scale transport of water substance
— convective-scale water sources/sinks (phase change)
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Scales of Atmospheric Motions
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Parametrizations

Representations of physical processes that occur on scales
below the numerical truncation limit. To close the governing
equations, it is necessary to incorporate these effects

Some important physical processes:

e Moist Processes
— Moist convection, shallow convection, large scale condensation

e Radiation and Clouds
— Cloud parameterization, radiation

e Surface Fluxes
— Fluxes from land, ocean and sea ice (from data or models)

e Turbulent mixing
— Planetary boundary layer parameterization, vertical diffusion, gravity

B wave drag
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SIMPLIFIED LARGE-SCALE: CONVECTIVE INTERACTION
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Coupled Models = Increased Technical Complexity

Ocean-Atmosphere Coupling

Atmospheric GCM

SST and Sea Ice Wind Stress, P-E,
Distribution Net Heat Flux
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Interface Grid Interpolations, Units Conversions,
Time Averaging (e.g. one day), Flux Corrections (if any)

Sea Ice
Model

Ocean GCM

B Note: Ocean GCM's are as complex as Atmosphere GCM’s!
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How can we evaluate simulation quality?

e Continue to compare long term mean climatology
— average mass, energy, and momentum balances
— tells you where the physical approximations take you
— but you don’t necessarily know how you get there!

e Must also consider dominant modes of variability

— provides the opportunity to evaluate cliimate sensitivity
— response of the climate system to a specific forcing factor

— evaluate modeled response on a hierarchy of time scales

— exploit natural forcing factors to test model response
— diurnal and seasonal cycles
— El Nino Southern Oscillation (ENSO)
— intraseasonal variability; e.g., MJO
— solar variability
— volcanic aerosol loading
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Comparison of Mean Simulation Properties
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Mean Biases
Relative humidity, March-May 3km (9,000ft)

Observed Simulated

A W MR O e

N EEEEEE:

N\

NCAR J. J. Hack/A. Gettelman: June 2005



Observations: 20" Century Warming
Model Solutions with Human Forcing
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Climate Model ‘Evolution’

The development of climate models, past, present and future

Mid-1970s Mid-1980s Early 1990s Late 1990s
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FIGURE 1

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE




Summary

e Global Climate Modeling
— complex and evolving scientific problem

— parameterization of physical processes pacing progress
— observational limitations pacing process understanding

e Parameterization of physical processes
— opportunities to explore alternative formulations
— exploit higher-order statistical relationships?
— exploration of scale interactions using modeling and observation

— high-resolution process modeling to supplement observations
— e.g., identify optimal truncation strategies for capturing major scale interactions

— better characterize statistical relationships between resolved and
unresolved scales
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