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Climate Forecasting Schematic

• Xt : “state of climate”

• Modelled as dynamical system

D[Xt ] = h(Xt−1) (1)

D =differential operator

• Xt – very high dimensional. Dimension of order 103 or higher.



Climate Forecasting Schematic

• Yt : “observed variables”

• Simplest stochastic model

Yt = HXt + e

• Very high-dimensional

• H linear

• et Gaussian ⊥ Xt , et ∼ N(0,R).



Climate Forecasting Schematic

Actual:

1) Approximate (1) by computer model

2) Generate ensemble of n starting points {x (j)u
t−1

}n
j=1

3) Use computer model to generate forecast ensemble {x (j)
t }n

j=1

4) “Assimilate” yt to produce update ensemble {x (j)u
t }n

j=1



State Space Models

• A state space model consists of two sequences of random

variables.

• A (hidden) Markov chain (Xt : t ≥ 0)

Xt |Xt−1 ∼ q(Xt−1, ·),

• and a sequence of observations (Yt : t ≥ 1),

Yt |Xt ∼ g(·;Xt).

• Parameters: (q, g , p0). p0: the initial distribution of X0.

• Also known as the hidden Markov model if Xt is discrete.
. . . −−−−→ Xt−1 −−−−→ Xt −−−−→ Xt+1 −−−−→ . . .

�
�

�

. . . Yt−1 Yt Yt+1 . . .



Example of State Space Models

• In data assimilation

• Xt : vector of the true weather condition.

• Yt : the observed weather data.

• q(·, ·) determined by the dynamics, apparently delta function.

• Other applications: speech recognition, target tracking, DNA

and protein sequences, finance, etc.



The filtering recursion

. . . −−−−→ Xt−1

q−−−−→ Xt −−−−→ Xt+1 −−−−→ . . .
� g

�
�

. . . Yt−1 Yt Yt+1 . . .

• Start from p0|0 = p0.

• Forecast: for any t ≥ 1,

pt|t−1(xt) =
�

pt−1|t−1(xt−1)q(xt−1, xt)dxt−1.

• Update: for any t ≥ 1,

pt|t(xt |yt) ∝ pt|t−1(xt)g(yt ; xt).



Correspondence of Schematic to State Space Models

1 {x (j)
0

} sample from p0|0

2 {x (j)
t } sample from pt|t−1

3 (want) {x (j)u
t } from pt|t(xt |yt)



Correspondence of Schematic to State Space Models

Take H = Identity

pt|t(xt |yt) =
pt|t−1(xt)g(yt ; xt)�
pt|t−1(x)g(yt ; x)dx

Problems:

1. q is a delta function – not a real problem

2. pt|t−1(xt) no analytic representation

3. x is very high dimensional.



Correspondence of Schematic to State Space Models

Note: A sample from pt|t−1 can be turned into one from

pt|t(xt |yt) by rejective sampling.

a) Sample x
(1), ..., x (n)

N � n from pt|t−1

b) Toss coin with probability of heads =

g(yt ; x (j))/ maxx g(yt ; x)

to determine whether x
(j) is acceptable

c) x
(1)u
t = first accepted x

(j)

But N needs to be impossibly large.



The Gaussian Case: Kalman Filter

• Suppose: Gaussian forecast; linear observation

Xt |Y t−1

1
∼ N(µt|t−1,Σt|t−1);

Yt = HXt + �t , �t ∼ N(0,R).

• Update:

Xt |Y t
1
∼ N(µt ,Σt).

µt = µt|t−1 + Kt(yt − Hµt|t−1)

Σt = (I − KH)Σt|t−1

where

Kt = Σt|t−1H
T (HΣt|t−1H

T + R)−1.



The Lorenz 63 system

• State vector Zτ ∈ R3.

•
dZτ,1

dτ
= σ(Zτ,2 − Zτ,1),

dZτ,2

dτ
= Zτ,1(ρ− Zτ,3)− Zτ,2,

dZτ,3

dτ
= Zτ,1Zτ,2 − βZτ,3.

• σ = 10, β = 8/3, ρ = 28.



The ensemble Kalman filter (EnKF, Evensen 94)

• Assuming linear observation with Gaussian noise:
Yt = HXt + �t , �t ∼ N(0,R).

• Idea: pretend Xt to be Gaussian; use only linear relationship.

The EnKF update (with perturbed observation)

1. Start with a sample {x (j)
t }n

j=1
from p̂t|t−1.

2. Estimate the linear regression coefficient of Xt|t−1 on Yt :

K̂t = Σ̂t|t−1H
T (HΣ̂t|t−1H

T + R)−1, with sample cov Σ̂t|t−1.

3. Background observations: y
(j)
t = Hx

(j)
t + �(j)

t , �(j)
t ∼ N(0,R).

4. Update: x
(j)u
t = x

(j)
t + K̂t(yt − y

(j)
t ).

Remark: Another class of EnKF based on the square root filter is also
widely used (Anderson 01, Bishop et al 01). These are different for
population than EnKF above (for comparison see Lawson & Hansen 04;
Lei & Bickel 10).



The EnKF

a) Isn’t the same as Kalman filter unless pt|t−1(xt) is Gaussian.

b) Doesn’t estimate pt|t(xt |yt).

If n =∞, distribution of EnKF ensemble p̃t|t is that of

(I − K )Xt + K (Yt + �)|Yt = yt ,

where Xt ∼ pt|t−1(·), Yt = Xt + et , e ∼ N(0,R) independent

of (Xt ,Yt), which disagrees with that of Xt |Yt = yt except for

Gaussian Xt .



Sequential Monte Carlo filters

A fully nonparametric method (Gordon et al 93; Liu & Chen 98).

• Main idea: sample {x (j)
t }n

j=1
independently from

p̂t|t(xt) ∝ p̂t|t−1(xt)g(yt ; xt)

=
1

n

n�

j=1

q(x (j)
t−1

, xt)g(yt ; xt).

• Many clever sampling techniques make SMC filters useful in

practice (e.g., Künsch 05).

In climate forecasting: q not available in parametric form.



The Particle Filter: A Principled Approximation

(Most naive version)

• Given ensemble Et = {x (j)
t }n

j=1

• Importance sample proportional to g(yt ; x
(j)
t ) from Et , n times

with replacement.

• Get:

E(j)u
t = {x (j)u

t }n
j=1

with {x (j)u
t } iid

w�t ≡ P[x (j)u
t = x

�
t ] =

ϕ(yt − x
�
t ;R)�n

�=1
ϕ(yt − x�

t ;R)
, where ϕ(z ;R) is

density of N(0,R).



Theoretical Support for Method

(See, e.g., Kunsch (2005, Ann. Stat.))

If t is fixed, n→∞, and

P
∗(A) = n

−1
�n

j=1
1{x (j)u

t ∈ A}

then P
∗ ⇒ P ∼ pt|t(xt |yt).

In fact, even if t →∞ at a polynomial rate as n→∞.



Collapse of Particle Filters

w�0t ≡ max� w�t → 1,

so that
�

� �=�0
w�t → 0.



The Difficulty

• High dimension (Snyder, Bengtsson et al, MWR, 2007)

• More subtly, high effective dimension.



Prototype

(i) Xd×1 ∼ N (0, Jd)

(ii) Y = X + ε, ε ⊥ X, ε ∼ N (0, Jd)

X ↔ E1I

Y|X ↔
d�

j=1

ϕ(yj − xj) = qt(y|x)

Back to Claims



Simulation

NX ≡ dimension of X

Ne ≡ ensemble size

NY ≡ dimension of Y

X ∼ N(0, I )

Y = X + �

Forecast ensemble X
(j) iid N(0, I )

B = 103 simulations.



Prototype
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Histogram of max wi for Nx = 10, 30, 100 and Ne = 10
3

from the particle-filter simulations described in text

[Ne = 10
3, x

t ∼ N(0, I), Ny = Nx , H = I and ε ∼ N(0, I)]

Nx ≡ d, Ne ≡ B, B
d = 100, 33, 10,

loge B
d = 0, 69, 0.23, 0.069



Claims

A. If
log B

d
→∞ and g is bounded,

�����
1

B

B�

b=1

g

�
X

(b)

�
− Eg (X|Y)

�����→p 0

where E is under correct P(X|Y).



Claims Prototype

B. In prototype situation, if
log B

d
→ 0,

E(w(B)) = 1− 2√
5

�
log B

d
(1 + o(1)).

In this case, for g bounded, continuous,

1

B

B�

b=1

g

�
X

(b)

�
⇒ g

�
X

(k)

�

where k = argmin
j

���X(j)
���, X

(j) ∈ E1I , X
(j) ∼ p̃1I



The Effective Dimension

Cf. Snyder et al (2008) MWR, 4629–4640.

• If Xp×1 is Gaussian but has support of dimension d < p, then

collapse is determined by d not p.

• Roughly we expect collapse to occur quickly unless n� e
d .



Dimension Reduction Is Necessary

• Coordinates of X represent spatial positions.

• Distant coordinates are approximately independent.

• Neighboring X coordinates independent of far Y coordinates

given neighboring Y coordinates.



The Lorenz 96 System

• State vector Zτ ∈ R40.

• For k = 1, . . . , 40,
dZτ,k

dτ = (Zτ,k+1 − Zτ,k−2)Zτ,k−1

−Zτ,k + 8.



Localization

• Lorenz 96 small blocks of adjacent coordinates

• Needed for EnKF as well

• Amount of localization: local block size from 7 to 9.

• Particle filter requires pasting together of pieces – not

succeeded

• Localization and EnKF: Anderson (2001, MWR), Ott et al

(2004, Tellus).



A Reformulation of EnKF

• A simple fact: If (X ,Y ) is Gaussian, then for any y , y �,

(X |Y = y)− E (X |Y = y)
d
= (X |Y = y

�)− E (X |Y = y
�).

• As a result, if (x �, y �) ∼ (X ,Y ), then for all y

x
� − E (X |Y = y

�) + E (X |Y = y) ∼ (X |Y = y).

• In EnKF, y
j
t = Hx

j
t|t−1

+ �jt , so (x j
t|t−1

, y j
t ) ∼ (Xt|t−1,Yt).

x
j
t = x

j
t|t−1

+ K̂t(yt − y
j
t )

= x
j
t|t−1

− Ê (Xt |y j
t , pt|t−1) + Ê (Xt |yt , pt|t−1)

is approximately a random sample from (Xt |yt , pt|t−1), and

the Kalman adjustment K̂ty = Ê (Xt |y , pt|t−1).



Reduce the “First Order Bias”

• The true conditional expectation is

E (Xt |yt , pt|t−1) =

�
xpt|t−1(x)g(yt ; x)dx�
pt|t−1(x)g(yt ; x)dx

.

• A non-parametric estimator (“Importance Sampling”,

Hammersley & Handscomb 65):

Ê (Xt |yt , pt|t−1) =

�n
j=1

x
j
t|t−1

g(yt ; x
j
t|t−1

)
�n

j=1
g(yt ; x

j
t|t−1

)

=E (particle filter update ensemble) (1)



The non-linear ensemble adjustment filter (NLEAF)

The NLEAF update step

Given the prediction sample {x j
t|t−1

}n
j=1
∼ p̂t|t−1,

1 Compute y
j
t = Hx

j
t|t−1

+ �jt for j = 1, . . . , n.

2 Estimate Ê (Xt |y , pt|t−1) using importance sampling, for

y = yt , y
j
t , j = 1, . . . , n.

3 Update: x
j
t = x

j
t|t−1

− Ê (Xt |y j
t , p̂t|t−1) + Ê (Xt |yt , p̂t|t−1).



Reduce Dimensionality

Localization is still needed but relevant dimension is that of Y

(localized) + 1 only, not (X ,Y ) localized.



Simulation set up

• Discretize: xt = z∆t , t = 0, 1, 2, . . ..

• Observation yt = Hxt + �t , �t ∼ N
�
0,σ2

I
�
.

• yt generated from hidden true trajectory x
∗
t .

• Approximation error:

|| 1n
�

j x
j
t − x

∗
t ||2.

• Three different levels of difficulty:

• Hard case (Bengtsson et al 03): ∆ = 0.4; H incomplete;

σ2 = 0.5.

• Easy case (Ott et al 04): ∆ = 0.05; H = I ; σ2 = 1.

• Intermediate case: ∆ = 0.05; H incomplete; σ2 = 2.

• Ensemble size n must be a concern.



Numerical results for Lorenz 96 model: hard case

• ∆ = 0.4, yt,k = xt,2k−1 + �t,k , �t,k ∼ N (0, 0.5) , k = 1, . . . , 20.

Table: Summary of App. Err. with T=2000, n= 400.

NLEAF EnKF XEnsF

mean med std mean med std mean med std

0.65 0.63 0.20 0.97 0.88 0.32 0.92 0.85 0.31

Results of EnKF and XEnsF: Bengtsson et al (03).



Numerical results for Lorenz 96 model: intermediate

case

• ∆ = 0.05, yt,k = xt,2k−1 + �t,k , �t,k ∼ N (0, 2), k = 1, . . . , 20.

RMSE vs ensemble size (LETKF: Ott et al 04)



Conclusion

• Particle filters have promise primarily when

a) There has been successful localization or other drastic

dimension reduction.

b) There are well specified parametric models physics based or

good approximations.

• There is room for compromises between linear filters and

particle filters.


