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Basic Global Climate Dynamics




The Budyko-Sellers model is an idealized climate model
based on zonal and annual mean heat balance.

Atmosphere

Heat Transport

Sun

absorbed solar rad. = emitted infrared rad. + divergence of heat trans.

[Budyko, 1969; Sellers, 1969]



The Budyko-Sellers equations albedo outgoing infrared

/ e

Heat Balance/— S(z)(1—al(T(x))) = Fy(z)+ V- F

/ : \

solar constant sm latitude divergence
heat trans.

Shape Solar Rad.: S(z) = 1+ soPs(x)

a1 1> T
Ice-Albedo Feedback: Q(T(l)) — o, 1'=1T
oy 1< T

Simplified Equation:

Q. _

7 5@)(1 = a(T(2)) = A+ BT (z) + C(T(z) - T)
non-local param.

linearize infrared rad. of heat trans.



Solving the Budyko-Sellers model

¢
Global Heat Balance: Zg(l — ap(xg)) = A+ BT

ice line
Global-Mean Albedo: /

oyl = /0 ' (@) S(2)dz = oy | /0 " S(2)dz + as | / ' S(a)de

S

Heat Bal. at Ice Line:%S(:L’S)(l —ay) =A+ BT, +C(T, - T)

Solve for Mean Temp. and Combine:

Als) = 1+1% ((43 (5(3;3)(1 ~a)+ 20 _ap(a;s))> - (B—I—C)Ts)




The ice-albedo feedback leads to multiple equilibria in the
Budyko-Sellers model.
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A global climate model solves numerically the equations of
fluid flow and radiative transfer on a rapidly rot. sphere.

A global climate model typically has O(10°) degrees of freedom.



We use realistic ~600 Ma boundary conditions for
the ECHAMS/MPI-OM runs.
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One of the world’s most sophisticated global climate models
reproduces the basic concepts from Budyko-Sellers.

Snowball initiation in ECHAMS5/MPI-OM
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And now for something completely wacky... Some geologists
think a Snowball may have actually happened!




When were the Snowballs?
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Glacial rocks are overlain with rocks that suggest an
extremely hot and moist climate.

635 Ma cap-carbonate sequence, NW Namibia

‘ -Elandshbék Fm

[thanks to P Hoffman for next four slides]



Rocks show evidence of glaciers at sea level at the equator
about 600 millio




The occurrence of banded iron formations may suggest the
entire ocean was covered in ice.

regional glaciation = === global glaciation ~ ===ss== oxygen level
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Silicate weathering reduces when the temperature is low,
which increases CO, to form a negative feedback.

CO; emission and consumption are kept hari

in rough balance by a negative feedback 2 (weathering) :
resulting from the temperature-depend- COZ + CaS|O3 -— Cac03 + S|O2
ence of silicate weathering. The feedback .

operates on a million-year time scale. (metamorphism)

* bl Walker et al. (1981) Jour. Geophys. Res., 86, 9776.
CO; sources (emissions)

CO; sinks
- 20% organic matter
- 80% carbonate Rain scrubs CO,
from atmosphere 3
H2CO; reacts with silicate rocks volcanic | arc
producing cations and bicarbonate | -
marine organisms precipitate CaCO; and SiO, IR E b;::;:c
seawater basin
accretionary
prism
continental ; 2
oceanic crust continental crust
platform
LET lithosphere .
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The climate model and silicate weathering feedback can be
put together to explain geological observations.
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Very low weathering allows CO, to build up to
~10% of atmosphere over 1-10 million years



Concern about the survival of life has led some to propose a

“Slushball Earth” model for Snowball events.
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A Slushball would require very low ice-ocean albedo contrast and
would be precariously close to Snowball bifurcation.



The Jormungand Global Climate State




SNOWMIP simulations: slab ocean “aquaplanet”
with no OHT, 0° eccentricity, and 94% insolation.

no continents, no
ocean heat transport

N

CAM is an atmosphere-only GCM.



SNOWMIP will allow us to compare global climate models’
simulation of Snowball initiation in the most basic set-up.
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The CAM climate model produces an exciting new climate
state with an ice line at low latitudes and strong hysteresis!
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We call this new global climate state a “Jormungand State.”
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The Jormungand states have equilibrated.
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Global climate exhibits tristability in CAM.
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Tropical precipitation is concentrated in the intertropical
convergence zone in the modern climate.




The global hydrological cycle exposes low-albedo sea ice at
low latitudes, which maintains the Jormungand state.
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A strong ice/snow albedo contrast and internal atmospheric
dynamics sustain the Jormungand state.

Hadley cell
eddies

net preC|p|tat|on

SNOW

net
layer \ lprecip_

thick, permanent, snow-covered, sea glaaer

/ narrow strip of
] open ocean
thin, seasonal,
bare sea ice

latitude: pole ~20° equator



To study the Jormungand state in the Budyko-Sellers model
we must add a snow albedo.

New Albedo: ar 1T >T; snow accumulation
o, 1'=1T, latitude
olT(x)) =
(T(x)) g T < Ty x<axge"
as 1T <15, x> x4

New Global-Mean Albedo:

a'(:c CL-) alfo :Lda—l—azf bad:z,+a3f *S Ts < Tj
Yp\Tss Ty Qlfo ada,-l—ag,f S(x)d T >



The modified Budyko-Sellers reproduces the picture from
CAM, lending credibility to the fancy model.
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The Jormungand lifecycle can explain
Neoproterozoic glaciations

Enter Jormungand through Cap carbonates are deposited after
CO, drawdown. Weathering sudden jump into hot climate.

slows drastically and
Snowball is avoided.
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Accumulate CO2 slowly because ocean equilibrates
and sea floor weathering is active.



Jormungand state is result of a new bifurcation and

has much stronger hysteresis than the Slushball.

Slushball has a small hysteresis loop caused by growth of land ice.
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dynamic glaciers.




The narrow band of open ocean in the Jormungand
state easily allows the survival of life.
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Large climate jump on Jormungand exit and
significant hysteresis would make cap carbonates.
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Jormungand hysteresis leads to long lifetime,
particularly if CO, equilibrates with ocean.
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Observations suggest deglaciation occurred at
pCO,=0.01-0.08 bar.

0,(A"0<0) Respiration
+
weathering " +0; 470 ~=0
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L\quz’_t Sea level

Evaporm/ SO

[Bao et al., 2009]



Jormungand hysteresis means CO2 must reach
fraction O(0.01) to exit, consistent with Bao et al.
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Ocean strip is so narrow in Jormungand that ocean
could become anoxic under ice, allowing BIFs.
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Dynamic land glaciers are manifestly possible in a
Jormungand state.

[Donnadieu et al., 2003]
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Iridium anomaly could result from slow-moving
extratropical ice in Jormungand, esp. in bays.
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Extremely strong Hadley cell in Jormungand state
could explain giant wave ripples. . ... e
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Summary and Conclusions

There has been a longstanding debate about whether a “Snowball” or
“Slushball” model is more appropriate for Neoproterozoic glaciations.
Both models have significant problems.

Jormungand in Budyko-Sellers Jormungand in CAM
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We propose a new global climate state, the Jormungand state, that could
represent a solution to the “Snowball Paradox.” We have shown that this
state exists in simple and complex global climate models, as long as the
contrast between sea ice and snow albedo is large enough.



